期刊文献+

多边形壳体对带尾翼爆炸成型弹丸成型过程影响的数值分析 被引量:1

Numerical Analysis of the Effect of Polygonal Shell on the Forming Process of Explosively Formed Projective with Tail Fins
下载PDF
导出
摘要 近代对带尾翼爆炸成型弹丸(EFP)成型技术的研究,其机理基本上是控制爆轰波的传播方向和时间,从而引起药型罩周边产生一个周期性变化的冲量和速度,强制药型罩边缘形成有规律地产生翘曲,所以形成一定形状的尾翼。基于上述理论,利用显式动力分析软件ANSYS/LS-DYNA,建立一个具有特定形状壳体的EFP战斗部模型,进行研究多边形壳体引导爆轰波作用于药型罩上的规律和作用结果。模拟结果证明多边形壳体EFP战斗部能够形成良好的尾翼;并且具有一定的对称性,此研究具有一定的研究价值。 The mechanism of explosively formed projective(EFP)forming technology with tail fins has been studied in recent years,mainly depending on controlling the propagation direction and time of detonation waves,which caused the circumference of the shaped charge liner to produce a cyclical change in the impulse and speed,and forced the edge of the shaped charge liner to warp regularly and so that came the formation of a certain shape of the tail.Therefore,based on the above theory,an EFP warhead model with a specific shape shell was established,by using the explicit dynamic analysis software ANSYS/LS-DYNA,to study the regularity and results of the polygonal shell guiding on detonation wave.The simulation results show that the EFP warhead with the polygonal shell can form a good and Symmetrical tail fins,which proves a certain research value.
作者 于金升 刘天生 石军磊 刘金彪 聂鹏松 YU Jin-sheng;LIU Tian-sheng;SHI Jun-lei;LIU Jin-biao;NIE Peng-song(School of Chemical Engineering and Environment,North University of China,Taiyuan 030051,China)
出处 《科学技术与工程》 北大核心 2018年第7期134-138,共5页 Science Technology and Engineering
基金 2017年7月15日收到国家自然科学基金(11572292)资助
关键词 爆炸成型弹丸 ANSYS/LS-DYNA 爆轰波 药型罩 多边形壳体 数值模拟 explosively formed projective ANSYS/LS-DYNA detonation wave shaped charge liner polygonal shell numerical simulation
  • 相关文献

参考文献5

二级参考文献27

  • 1曹兵,陈惠武,明晓.起爆方式对EFP成形性能的影响[J].弹道学报,2000,12(3):64-68. 被引量:9
  • 2陶钢,朱鹤荣,石连捷.关于爆炸成型弹丸(EFP)的研究[J].弹道学报,1994,6(3):85-89. 被引量:5
  • 3陶钢,石连捷,朱鹤荣.自锻破片战斗部药形罩设计探讨[J].弹箭与制导学报,1995,15(3):37-42. 被引量:5
  • 4[1]Weimann K, Doeringsfeld K, Speck J, et al. Modeling, testing, and analysis of EFP performance as a function of confinement [A]. 12th International Symposium on Ballistics [C]. San Antonio, 1990:228-237.
  • 5[2]Weimann K. Flight stability of EFP with star shaped tail [A]. 14th International Symposium on Ballistics [C]. Queber, Canada, 1993:755-763.
  • 6[3]Weimann K. Performance of tantalum, copper, and iron EFPs against steel targets [A]. 15th International Symposium on Ballistics [C]. Israel, 1995:399-404.
  • 7[4]Bouet T H, Tarayre P, Guillon J P. Study of a multi-point ignition EFP [A]. 15th International Symposium on Ballistics [C]. Israel, 1995:159-166.
  • 8[5]Murphy M, Weimann K, Doeringsfeld K, et al. The effect of explosive detonation wave shaping on EFP shape and performance [A]. 13th International Symposium on Ballistic [C]. Stockholm, 1992:29-36.
  • 9[6]Blache A, Weimann K. Generation of different detonation wave contours [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:337-346.
  • 10[7]Tosello R. Twin EFPs for underwater applications [A]. 16th International Symposium on Ballistics [C]. San Francisco, USA, 1996:122-129.

共引文献67

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部