摘要
通过聚类分析的方法得到信息粒与对象权重的确定方法,同时将对象权重与熵理论知识相结合定义了一种加权条件熵.最后基于新定义的加权条件熵得到一种改进的属性重要度确定方法和相应的属性约简算法,并且用UCI中的几组数据集验证了该算法的可行性和合理性.
Information granules and a method to determine the weight of the object were obtained by using clustering analysis.At the same time,a weighted conditional entropy was defined by combining the object weights with the entropy theory.Finally,an improved method to determine the attribute significance and the corresponding attribute reduction algorithm were obtained based on the new definition of weighted conditional entropy.Experiments were performed on UCI data sets.And the results showed that the proposed algorithm was feasible and reasonable.
作者
范会涛
冯涛
FAN Huitao;FENG Tao(School of Sciences,Hebei University of Science and Technology,Shijiazhuang 050018,China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2018年第1期39-46,共8页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(61300121
61573127
61502144)
河北省自然科学基金项目(A2014205157)
河北科技大学博士科研启动基金项目(QD201228)
关键词
相容关系
聚类分析
加权条件熵
约简
compatibility relation
cluster analysis
weighted conditional entropy
reduction