期刊文献+

差分变异和交叉迁移的生物地理学优化算法 被引量:1

Biogeography-based Optimization Algorithm with Differential Mutation and Cross Migration
下载PDF
导出
摘要 为了增强生物地理学优化(BBO)算法的优化性能,提出了一种差分变异和交叉迁移的BBO算法(DCBBO).首先用差分扰动操作替换BBO算法的变异操作,形成差分变异算子,强化了探索能力;其次用基于维度的垂直交叉操作取代BBO算法的迁移操作,形成交叉迁移算子,提升开采能力的同时又注重了探索能力;最后,为平衡算法的探索和开采,将启发式水平交叉操作融入交叉迁移算子中,形成混合交叉迁移算子,进一步提升开采能力.在不同维度的一组常用基准函数上进行了大量实验,结果表明,与其他state-of-the-art算法相比,DCBBO优化能力显著,稳定性更强,运行速度更快. In order to enhance the optimization performance of the biogeography-based optimization(BBO)algorithm,an improved BBO algorithm with differential mutation and cross migration(DCBBO)was proposed.Firstly,BBO′s mutation operation was replaced by a differential disturbance operation to form a differential mutation operator.It could improve the exploration.Secondly,a dimension-based vertical crossover operation was used instead of BBO′s original migration operation to generate a cross migration operator.It could improve the exploitation and emphasize the exploration.Finally,to balance the exploration and exploitation,a heuristic horizontal crossover operation was merged into the cross operator to obtain a hybrid cross migration operator.It could further improve the exploitation.A large number of experiments were made on a set of common benchmark functions with different dimensions.The results showed that DCBBO could obtain more significant optimization ability,stronger stability and faster running speed compared with other state-of-the-art algorithms.
作者 张新明 康强 程金凤 王霞 ZHANG Xinming;KANG Qiang;CHENG Jinfeng;WANG Xia(College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China;Engineering Technology Research Center for Computing Intelligence and Data Mining of Henan Province, Xinxiang 453007,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2018年第1期47-53,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省重点科技攻关项目(132102110209) 河南省基础与前沿技术研究计划项目(142300410295)
关键词 生物地理学优化算法 差分变异 交叉迁移 biogeography-based optimization algorithm differential mutation cross migration
  • 相关文献

参考文献5

二级参考文献40

  • 1CHEN X W, KAR S, RALESCU D A. Cross-entropy measure of uncertain variables[J]. Information Sciences, 2012, 201:53-60.
  • 2HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J]. Expert Systems with Application, 2011, 38(12):14805-14811.
  • 3BHANDARI A K, SINGH V K, KUMAR A, et al.. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy [J]. Expert Systems with Application, 2014, 41(7): 3538-3560.
  • 4SIMON D. Biogeography-based optimization [J]. IEEE Transaction on Evolutionary Computation, 2008,12(6):702-713.
  • 5YANG G Q, LIU Y K, YANG K. Multi-objective biogeography-based optimization for supply chain network design under uncertainty[J]. Computers and Industrial Engineering, 2015, 85:145-156.
  • 6TAMJIDY M, PASLAR S, BAHARUDIN B T, et al.. Biogeography based optimization (BBO) algorithm to minimize non-productive time during hole-making process[J]. International Journal of Production Research, 2015, 53(6): 1880-1894.
  • 7KIM S S, BYEON J H, YU H, et al.. Biogeography-based optimization for optimal job scheduling in cloud computing [J]. Applied Mathematics and Computation, 2014, 247:266-280.
  • 8NIU Q, ZHANG L T, LI K.A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells[J]. Energy Conversion and Management, 2014, 86: 1173-1185.
  • 9GUO W A, WANG L, WU Q D. An analysis of the migration rates for biogeography-based optimization[J]. Information Sciences, 2014, 254:111-140.
  • 10MA H P, SIMON D, FEI M R, et al.. Variations of biogeography-based optimization and Markov analysis [J]. Information Sciences, 2013, 220:492-506.

共引文献111

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部