期刊文献+

基于混合卷积自编码极限学习机的RGB-D物体识别 被引量:9

RGB-D object recognition based on hybrid convolutional auto-encoder extreme learning machine
下载PDF
导出
摘要 有效学习丰富的表征信息在RGB-D目标识别任务中至关重要,是实现高泛化性能的关键。针对卷积神经网络训练时间长的问题,提出了一种混合卷积自编码极限学习机(HCAE-ELM)结构,包括卷积神经网络(CNN)和自编码极限学习机(AE-ELM),该结构合并了CNN的有效性和AE-ELM快速性的优点。它使用卷积层和池化层分别从RGB和深度图来有效提取低阶特征,然后在共享层合并两种模型特征,输入到自编码极限学习机中以得到高层次的特征,最终的特征使用极限学习机(ELM)进行分类,以获得更好的快速泛化能力。文中在标准的RGB-D数据集上进行了评估测试,其实验结果表明,相比较深度学习和其他的ELM方法,文中的混合卷积自编码极限学习机模型取得了良好的测试准确率,并且有效地缩减了训练时间。 Learning rich representations efficiently plays an important role in RGB-D object recognition task,which is crucial to achieve high generalization performance.For the long training time of convolutional neural networks,a Hybrid Convolutional Auto-Encoder Extreme Learning Machine Structure(HCAE-ELM)was put forward which included Convolutional Neural Network(CNN)and Auto-Encoder Extreme Learning Machine(AE-ELM),which combined the power of CNN and fast training of AE-ELM.It used convolution layers and pooling layers to effectively abstract lower level features from RGB and depth images separately.And then,the shared layer was developed by combining these features from each modality and fed to an AE-ELM for higher level features.The final abstracted features were fed to an ELM classifier,which led to better generalization performance with faster learning speed.The performance of HCAE-ELM was evaluated on RGB-D object dataset.Experimental results show that the proposed method achieves better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.
作者 殷云华 李会方 Yin Yunhua;Li Huifang(School of Electronics and Information,Northwestern Polytechnical University,Xi′an 710072,China;Science and Technology on Transient Impact Laboratory,Beijing 102202,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第2期52-59,共8页 Infrared and Laser Engineering
基金 国家自然科学基金青年科学基金(61402368) 瞬态冲击技术重点实验室基金(61426060103162606007)
关键词 极限学习机 卷积神经网络 自编码极限学习机 物体识别 ELM CNN AE-ELM object recognition
  • 相关文献

参考文献6

二级参考文献47

  • 1梁宾桥,王继宗,梁晓颖.高性能混凝土强度预测的神经网络-主成分分析[J].计算机工程与应用,2004,40(18):192-195. 被引量:13
  • 2Kelly D,McDonald J,Markham C.A Person Independent System for Recognition of Hand Postures Used in Sign Language[J].Pattern Recognition Letters,2010,31(11):1359-1368.
  • 3Wang Chieh-Chih,Wang Ko-Chih.Hand Posture Recognition Using Adaboost with Sift for Human Robot Interaction[C]//Proc.of International Conference on Advanced Robotics.Jeju Island,Korea:[s.n.],2007.
  • 4Flasinski M,Myslinski S.On the Use of Graph Parsing for Recognition of Isolated Hand Postures of Polish Sign Language[J].Pattern Recognition,2010,43(6):2249-2264.
  • 5Witten I H,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].Burlington,USA:Morgan Kaufmann Publishers,2005.
  • 6MarquessJP 吴逸飞.模式识别-原理、方法及应用[M].北京:清华大学出版社,2003..
  • 7Plagemann C, Ganapathi V, Koller D, et al. Real-time identification and localization of body parts from depth images[C]//Proceedings of IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010: 3108-3113.
  • 8Schwarz L A, Mkhitaryan A, Mateus D, et al. Estimating human 3d pose from time-of-flight images based on geodesic distances and optical flow[C]//Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition and Workshops. Santa Barbara, USA: IEEE, 2011: 700-706.
  • 9Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images[J]. Communications of the ACM, 2013, 56(1): 116-124.
  • 10Sim D G, Kwon O K, Park R H. Object matching algorithms using robust Hausdorff distance measures[J]. IEEE Transactions on Image Processing, 1999, 8(3): 425-429.

共引文献150

同被引文献46

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部