期刊文献+

解非单调变分不等式投影算法的扰动分析 被引量:1

A Perturbation Analysis of Projection Method for Solving Variational Inequalities without Monotonicity
下载PDF
导出
摘要 2015年叶与何提出了求解非单调变分不等式的二次投影算法,该算法的第k+1个迭代点由第k个迭代点向可行集与前k个半空间的交的投影来得到。从而随着k的增加,投影的计算也越来越复杂。本文对该算法做了扰动分析,证明了新迭代点在一定的误差影响下仍然能全局收敛到变分不等式的解。 In 2015,Ye and He proposed a double projection method for solving variational inequalities without monotonicity,by which the k+1th iteration point is obtained by projecting the kth iteration point onto the intersection of the feasible set and all of k half-spaces before.With the increasing of k,the calculation of projection becomes more and more complex.In this paper,the perturbation analysis of the method is presented.Under some assumptions about the error vector,the global convergence of the new iteration point to the solution of the variational inequality is proved.
作者 唐南春 叶明露 TANG Nanchun;YE Minglu(College of Mathematics and Information,China West Normal University,Nanchong SiChuan 637009,China)
出处 《西华师范大学学报(自然科学版)》 2018年第1期68-73,共6页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅自然科学重点项目(15ZA0154) 西华师范大学科研启动基金项目(14E014) 西华师范大学英才科研基金项目(17YC394) 西华师范大学创新团队(CXTD2014-4)
关键词 变分不等式 投影算法 非单调 扰动 variational inequality projection method nonmonotone perturbation
  • 相关文献

参考文献2

二级参考文献18

  • 1何诣然.一个关于混合变分不等式问题的投影算法[J].数学物理学报(A辑),2007,27(2):215-220. 被引量:10
  • 2Han W,Reddy B.On the finite element method for mixed variational inequalities arising in elastoplasticity.SIAM J Numer Anal,1995,32(6):1778-1807
  • 3Hartman Philip,Stampacchia Guido.On some non-linear elliptic differential-functional equations.Acta Math,1966,115:271-310
  • 4Harker Patrick T,Pang Jongshi.Finite-dimensional variational inequality and nonlinear complementarity problems:a survey of theory,algorithms and applications.Math Programming,1990,48(2):161-220
  • 5Facchinei F,Pang Jongshi.Finite-Dimensional Variational Inequalities and Complementarity Problems.New York:Springer-Verlag,2003
  • 6Khobotov E N.A modification of the extragradient method for solving variational inequalities and some optimization problems.Zh Vychisl Mat i Mat Fiz,1987,27(10):1462-1473
  • 7Marcotte P.Application of khobotov's algorithm to variational inequalities and network equilibrium.Inform Systems Oper Res,1991,29(10):258-270
  • 8Solodov M V,Svaiter B F.A new projection method for variational inequality problems.SIAM J Control Optim,1999,37(3):765-776
  • 9Solodov Michael V,Tseng Paul.Modified projection-type methods for monotone variational inequalities.SIAM J Control Optim,1996,34(5):1814-1830
  • 10Wang Y J,Xiu N H,Wang C Y.Unified framework of extragradient-type methods for pseudomonotone variational inequalities.J Optim Theory Appl,2001,111(3):641-656

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部