摘要
随着我国互联网普及率和人民生活水平的提高,网上购物已成为很多人愿意选择的购物方式。据调查显示,近几年来网购所占购物数额的比例逐年大幅度提升^([1])。而与此同时,电子商务平台上商品的评论数量也呈几何式上升,使得想要购买商品的顾客很难在纷繁的评论中提取到自己所需要的信息。即使能得到信息也过于片面,不能系统合理评测商品。笔者站在用户的角度上开发本系统,目的是希望能降低顾客网络购物风险。本系统主要采用爬虫技术、Java技术、数据挖掘中的一些算法和一些当前比较先进的开源接口和框架来实现,用户可参考系统给出的评测结果从而选择是否购买该产品^([2])。
With the penetration of China's Internet and the improvement of people's living standards,shopping on the Internet has become a choice for many people.According to the survey,in recent years the proportion of online shopping accounted for a substantial increase in the proportion of shopping.At the same time,the number of reviews on the e-commerce platform also showed a geometric rise,making it difficult for customers who want to buy goods to extract the information they need in numerous comments.Even if you can get information,it's too one-sided to evaluate the product properly.The author develops this system on the user's point of view,the aim is to reduce the risk of shopping.The system mainly uses crawler technology,Java technology,some algorithms in data mining and some advanced open source interface and framework to achieve,the user can refer to the evaluation results given by the system to choose whether to purchase the product.
作者
王淑军
刘成
崔富超
李鹏飞
梁鑫月
Wang Shujun;Liu Cheng;Cui Fuchao;Li Pengfei;Liang Xinyue(School of Computer Science,Inner Mongolia University,Hohhot Inner Mongolia 010021,China)
出处
《信息与电脑》
2017年第10期131-132,共2页
Information & Computer