期刊文献+

基于不平衡样本推荐算法研究

Research on Algorithm of Recommendation Based on Unbalanced Samples
下载PDF
导出
摘要 用户或项目的分类是推荐算法的关键内容,而推荐过程中的不平衡样本问题,会影响少数类用户或少数类项目的推荐效果。笔者提出了SVM集合算法,利用SVM对多数类样本和少数类样本两种不同样本凸包分别进行压缩,而不会对SVM的分类超平面造成影响的几何特性,来实现不平衡样本的分类效果。 User or project classification is a key element of the recommended algorithm,and the unbalanced sample problem in the recommended process can affect the recommendation of a few categories of users or a few categories of projects.In this paper,SVM ensemble algorithm is proposed,and SVM is used to compress the two different sample convex hulls of most samples and few samples,and the geometric characteristics of SVM are not affected by the classification of SVM.The classification effect of unbalanced samples is realized.
作者 火雪挺 Huo Xueting(Global Business Consulting Services,International Business Machines(China)Co.,Ltd.,Shanghai 201100,China)
出处 《信息与电脑》 2017年第2期113-114,共2页 Information & Computer
关键词 不平衡样本 推荐算法 GSVM算法 unbalanced samples recommended algorithm GSVM algorithm
  • 相关文献

参考文献3

二级参考文献82

  • 1林舒杨,李翠华,江弋,林琛,邹权.不平衡数据的降采样方法研究[J].计算机研究与发展,2011,48(S3):47-53. 被引量:31
  • 2吴洪兴,彭宇,彭喜元.适用于不平衡样本数据处理的支持向量机方法[J].电子学报,2006,34(B12):2395-2398. 被引量:17
  • 3王娜,李霞.基于类加权的双ν支持向量机[J].电子与信息学报,2007,29(4):859-862. 被引量:4
  • 4Nitesh V C,et al.Editorial:special issue on learning from imbalanced data sets[J].ACM SIGKDD Exploration Newsletter,2004,6(1):1-6.
  • 5Chawlan N V,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
  • 6Zhou Z H,Liu X Y.Training cost-sensitive neural networks with methods addressing the class imbalance problem[J].IEEE Transaction on Knowledge and Data Engineering,2006,18(1):63-77.
  • 7Alejo R,et al.An empirical study for the multi-class imbalance problem with neural networks[J].Lecture Notes in Computer Science,Progress in Pattern Recognition,Image Analysis and Applications,2008,5197:479-486.
  • 8Veropulos K,et al.Controlling the sensitivity of support vector machine[A].Proceedings of the International Joint Conference on AI[C].1999:55-60
  • 9Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 10陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部