摘要
提出一个基于蒙特卡洛(MC)的构造方法,用于设计高维核矩阵极化码。证明当仿真次数趋向于无穷时,采用MC构造方法计算的位信道差错概率可以无限逼近实际差错概率。仿真结果表明,在连续消去和列表连续消去译码算法下,MC构造方法设计的极化码有着优于高斯近似构造方法设计的极化码。MC构造方法是一个有效的高维核矩阵极化码设计方法。
A Monte Carlo(MC)construction method for constructing polar codes with high-dimensional binary kernel is presented and analyzed.It is shown that the error probability of bit-channel calculated by the proposed MC construction method is accurate when the times of simulation goes to infinity.Simulations show that the MC construction method performs much better than the Gaussian Approximation-Density Evolution construction method under the SC and list SC decoders for polar codes with high-dimensional kernels.
作者
黄志亮
张施怡
周水红
Huang Zhiliang;Zhang Shiyi;Zhou Shuihong(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)
出处
《计算机时代》
2018年第4期57-61,共5页
Computer Era
基金
国家自然科学基金(61401399)
东南大学移动通信国家重点实验室开放研究基金资助(2016D05)
浙江省自然科学基金(LY18F010017)
关键词
蒙特卡洛
高维核矩阵
极化码设计
连续消去译码
Monte Carlo
high-dimensional kernel
construction of polar code
successive cancellation decoding