期刊文献+

采用主动学习的动态网络链接预测方法 被引量:3

Using active learning in link prediction for dynamic networks
下载PDF
导出
摘要 针对网络动态性和稀疏性的特点,在网络进化及链接预测过程中引入主动学习范式,提出了一种新的动态网络链接预测方法。首先为网络中每个结构特征的变化序列都生成一个分类器,再用这些分类器对每个未连接的节点对进行评分并把预测结果差异较大的节点对样本交于用户判别;一旦获取真实的标记(即节点间是否存在链接),系统采用更新的训练集重新训练各分类器并整合得到最终的模型。在三个现实的合著者网络数据集中的实验表明,在动态网络链接预测方法中引入主动学习在AUC值指标上有显著提高。 In view of the characteristics of network dynamics and sparsity,introducing the active learning paradigm in the process of network evolution and link prediction,this paper proposed a new dynamic network link prediction method.The method firstly generated a classifier for the variation sequence of each structural feature.Then it used these classifiers to score each unconnected node pair and gave the node with the large difference of prediction result to the user.Once the real labels were obtained(i.e.,whether the links existed),these classifiers would be retrained using the updated training set and be integrated to the final model.Experimental results in three real co-author network datasets show that the performance of link prediction method for dynamic networks can significantly improve the AUC measure by using active learning.
作者 安琛 陈可佳 彭高婧 An Chen;Chen Kejia;Peng Gaojing(College of Computer,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第3期817-819,824,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61571238)
关键词 链接预测 主动学习 动态网络 link prediction active learning dynamic network
  • 相关文献

参考文献2

二级参考文献29

  • 1Getoor L,Diehl C ELink mining: a survey[J].ACM SIG- KDD Explorations Newsletter, 2005,7 (2) : 3 - 12.
  • 2Liben-Nowell D, Kleinberg J.The link-prediction problem for social networks[J].Journal of the American Society for Information Science and Technology,2007,58(7): 1019-1031.
  • 3Lichenwalter R N, Lussier J T, Chawla N V.New perspec- tives and methods in link prediction[C]//Proceedings of the 16th ACM SIGKDD, Washington DC, 2010: 243-252.
  • 4Cohen I, Cozman F G, Sebe N, et al.Semi-supervised learning of classifiers: theory, algorithms, and their appli- cation to human-computer interaction[J].IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2004, 26(12) : 1553-1567.
  • 5Nigam K, Ghani R.Analyzing the Effectiveness and ap- plicability of co-training[C]//Proceedings of the 9th Inter- national Conference on Information and Knowledge Man- agement, McLean, VA, 2000: 86-93.
  • 6Blum A, Mitchell T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the l lth Conference on Computational Learning Theory, Madison, WI, 1998: 92-100.
  • 7Hasan M A,Chaoji V, Salem S, et al.Link prediction us- ing supervised learning[C]//Proceedings of SDM' 06 Work- shop on Link Analysis, Counterterrorism and Security, Minneapolis, MN, 2006.
  • 8Goldman S, Zhou Y.Enhancing supervised learning with unlabeled data[C]//Proceedings of the 17th International Conference on Machine Learning, San Francisco, CA, 2000: 327-334.
  • 9Brouard C, D' Alche-Buc F, Szafranski M.Semi-supervised penalized output kernel regression for Link prediction[C]// Proceedings of the 28th International Conference on Ma- chine Learning,Washington DC,2011:593-600.
  • 10Kashima H,Kato T,Yamanishi Y,et al.Link propagation: a fast semi-supervised learning algorithm for link pre- diction[C]//Proceedings of the SIAM International Con- ference on Data Mining, Sparks, NV, 2009:1099-1110.

共引文献11

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部