期刊文献+

维持弧的唯一性优化粗粒度弧相容算法

Optimized coarse-grained arc-consistency algorithm for maintaining the uniqueness of arc
下载PDF
导出
摘要 针对人工智能领域中广泛应用的约束满足问题,本文分析了约束满足问题的粗粒度维持弧相容求解算法在弧相卷(arc corsistency,AC)执行过程中对于弧存在冗余的放回操作,并证明了这类放回是冗余的。同时提出一种改进方法 AC_AO,避免这类冗余的弧放回操作,从而保证了弧的唯一性。改进后框架可用于改进所有的粗粒度弧相容算法。实验结果表明,经过AC_AO改进后的算法最多可以少检查77%的弧,最多可以减少30%的CPU求解时间。这将大大减少修正函数的调用次数,从而提高AC的执行效率,应用在维持弧相容算法求解的过程中提高效率是非常有意义的。 To address the widely encountered problem of constraint satisfaction in artificial intelligence,this paper analyzed the putback operation of the coarseness maintenance arc-consistency algorithm to avoid the drawbacks of redundant checks for arcs while implementing the AC algorithm and verified that these checks are redundant.An improved algorithm,AC_AO,was proposed to avoid the drawbacks of these redundant checks to ensure the uniqueness of the arc and improve coarse-grained arc-consistency algorithms.The experimental results reveal that AC_AO can reduce the arc checking quantity by 77%and reduce the CPU computation time up to 30%.This improvement will greatly reduce the frequency of modifications and significantly increase the efficiency of AC algorithm execution.
作者 李颖 杨罡 李占山 LI Ying;YANG Gang;LI Zhanshan(College of Computer Science and Technology,Jilin University,Changchun 130012,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第4期744-750,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(61272208 61373052) 吉林省科技计划项目(20180101043JC)
关键词 人工智能 约束满足问题 维持弧相容 粗粒度算法 哈希算法 唯一 预处理 一致性 冗余 回溯 artificial intelligence constraint satisfaction problem maintaining arc consistency coarseness algorithm hashing algorithm uniqueness preprocessing consistency redundancy backtracking
  • 相关文献

参考文献4

二级参考文献16

  • 1季晓慧,黄拙,张健.约束求解与优化技术的结合[J].计算机学报,2005,28(11):1790-1797. 被引量:9
  • 2Freuder E C,Mackworth A K.Constraint Satisfaction:an Emerging Paradigm[M].Amsterdam:Elsevier,2006:13-27.
  • 3Bessière C.Constraint Propagation[M].Amsterdam:Elsevier,2006:29-84.
  • 4Van Beek P.Backtracking Search Algorithms[M].Amsterdam:Elsevier,2006:85-134.
  • 5Schiex T,Verfaillie G.Nogood recording for static and dynamic constraint satisfaction problems[J].Int Journal on Artificial Intelligence Tools,1994,3(2):187-207.
  • 6Lecoutre C,Sais L,Tabary S,et al.Transposition tables for constraint satisfaction[C]//Proc of AAAI'07.Menlo Park,CA:AAAI Press,2007:243-248.
  • 7Lecoutre C,Sais L,Tabary S,et al.Reasoning from last conflict(s)in constraint programming[J].Artificial Intelligence,2009,173(18):1592-1614.
  • 8Mackworth A K.Consistency in networks of relations[J].Artificial Intelligence,1977,8(1):99-118.
  • 9Sabin D,Freuder E C.Contradicting conventional wisdom in constraint satisfaction[C]//Principles and Practice of Constraint Programming 1994.Berlin:Springer,1994:10-20.
  • 10Lecoutre C,Hemery F.A study of residual supports in arc consistency[C]//Proc of the 20th Int Joint Conf on Artificial Intelligence.San Francisco:Morgan Kaufmann,2007:125-130.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部