期刊文献+

一类带有恐惧效应的捕食模型正解的分歧及稳定性 被引量:3

Bifurcation solutions and stability of apredator-prey model with fear effect
下载PDF
导出
摘要 考虑了一类带有恐惧效应的捕食-食饵模型的共存态问题.利用谱分析和分歧理论的方法,以m为分歧参数,讨论了系统在半平凡解附近出现分歧现象.运用线性算子的扰动理论和分歧解的稳定性理论给出分歧解的稳定性.得出系统在半平凡解附近出现分歧现象且局部分歧解是无条件稳定的. The coexistence of the predator-prey model with fear effect is considered.By the method of spectral analysis and bifurcation theory,the bifurcation at the steady-state solutions is acquired by treating m as bifurcation parameters.Some stability results of the bifurcation solutions are obtained by using perturbation theory of linear operators and stability theory of bifurcation solutions.The results show that this system arises bifurcation phennmenon at the steady-state solution,and this bifurcation solution is unconditionally stable.
作者 王蓉 杨文彬 李艳玲 WANG Rong;YANG Wenbin;LI Yanling(School of Mathematics and Information Science,Shaanxi Normal University,Xi′an 710062,China;School of Science,Xi′an University of Posts and Telecommunications,Xi′an 71012,China)
出处 《纺织高校基础科学学报》 CAS 2018年第1期45-54,共10页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(61672021) 陕西省教育厅专项科研计划项目(16JK1710)
关键词 恐惧效应 捕食模型 谱分析 稳定性 分歧理论 fear effect predator-prey model spectral analysis stability bifurcation theory
  • 相关文献

参考文献3

二级参考文献30

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44(1): 331-340
  • 2DeAngelis D L, Goldstein 1% A, O'neill 1% V. A model for trophic interaction. Ecology, 1975, 56(2): 881-892
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17(6): 1339-1353
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Araer. Math. Soc., 1997, 349(6): 2443-2475
  • 5Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A, 2001, 131(2): 321-349
  • 6Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1990
  • 7Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Spring-Verlag, 1983
  • 8Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues.J. Functional Analysis, 1971, 8(2): 321-340
  • 9Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835
  • 10Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52(2): 161-180

共引文献17

同被引文献11

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部