期刊文献+

正负定矩阵下GAOR迭代法的收敛性

The convergence of GAOR iterative method on the basis of positive and negative definite matrices
下载PDF
导出
摘要 为了研究GAOR迭代法在线性方程组系数矩阵分别为Hermite正定矩阵和负定矩阵两种情况下的收敛性,将Householder-John定理推广到负定情况下,并给出负定条件下GAOR迭代法收敛的充要条件.利用Householder-John定理,完善GAOR迭代法的收敛性结论.最后借助推广的Householder-John定理,分析GAOR迭代法在线性方程组系数矩阵为Hermite负定矩阵条件下的收敛性. In order to study the convergence of GAOR iterative method on the basis of Hermitian positive and negative definite matrices,firstly the Householder-John theorem is introduced and generalized to the case of negative definite matrices.Then a sufficient and necessary condition for the convergence of GAOR iterative method is given under the negative definite condition.By using the Housholder-John theorem,the convergent conclusion of GAOR iterative method is improved.Finally,the convergence of GAOR iterative method under the Hermitian negative definite condition is analyzed through the generalized Householder-John theorem.
作者 张改芹 畅大为 李晓艳 ZHANG Gaiqin;CHANG Dawei;LI Xiaoyan(School of Mathematics and Information Science,Shaanxi Normal University,Xi′an 710119,China)
出处 《纺织高校基础科学学报》 CAS 2018年第1期74-80,共7页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(11226266 11401361)
关键词 收敛性 HERMITE矩阵 正定矩阵 负定矩阵 GAOR迭代法 convergence Hermitian matrix positive definite matrix negative definite matrix GAOR iterative method
  • 相关文献

参考文献5

二级参考文献26

  • 1魏小梅,畅大为.相容次序矩阵SAOR方法收敛的充要条件[J].纺织高校基础科学学报,2006,19(3):201-204. 被引量:6
  • 2SISLER M,UBER Die. Konvergenz eines gewissen Iterationsverfahren ftir zyklische Matrizen [ J ]. Apl Mat, 1973,18 : 89-98.
  • 3VARGA R S. Iterative analysis [ M ]. New Jersey: Prentice-Hall, Englewood Cliffs, 1962.
  • 4YOUNG D M. Iterative solution of large linear system[ M]. New York: Academic Press, 1971:142-147.
  • 5胡家赣.线性方程组的迭代解法[M].北京:科学出版社,1977:154-167.
  • 6SISLER M, UBER Ein. Iterationsverfahren fur zyklische Matrizen [ J ]. Apl Mat, 1972,17:225-233.
  • 7MARTINS M M. A note on convergence of the MSOR method[J]. Linear Algebra Appl, 1990,141:223-226.
  • 8DERCEG D, MARTINS M M,TRIGO M E. On convergence of the MSOR method for some classes of matrices[J]. SI- AM J Matrix Anal Appl, 1993,14 : 122-131.
  • 9DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183 : 953-960.
  • 10DARVISHI M T,KHOSRO-Aghdam R. Symmetric successive overrelaxation methods for rank deficient linear system [J]. Appl Math Comput,2006,173(1) :404-420.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部