摘要
为了研究GAOR迭代法在线性方程组系数矩阵分别为Hermite正定矩阵和负定矩阵两种情况下的收敛性,将Householder-John定理推广到负定情况下,并给出负定条件下GAOR迭代法收敛的充要条件.利用Householder-John定理,完善GAOR迭代法的收敛性结论.最后借助推广的Householder-John定理,分析GAOR迭代法在线性方程组系数矩阵为Hermite负定矩阵条件下的收敛性.
In order to study the convergence of GAOR iterative method on the basis of Hermitian positive and negative definite matrices,firstly the Householder-John theorem is introduced and generalized to the case of negative definite matrices.Then a sufficient and necessary condition for the convergence of GAOR iterative method is given under the negative definite condition.By using the Housholder-John theorem,the convergent conclusion of GAOR iterative method is improved.Finally,the convergence of GAOR iterative method under the Hermitian negative definite condition is analyzed through the generalized Householder-John theorem.
作者
张改芹
畅大为
李晓艳
ZHANG Gaiqin;CHANG Dawei;LI Xiaoyan(School of Mathematics and Information Science,Shaanxi Normal University,Xi′an 710119,China)
出处
《纺织高校基础科学学报》
CAS
2018年第1期74-80,共7页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金(11226266
11401361)
关键词
收敛性
HERMITE矩阵
正定矩阵
负定矩阵
GAOR迭代法
convergence
Hermitian matrix
positive definite matrix
negative definite matrix
GAOR iterative method