期刊文献+

求解理想磁流体方程的高分辨率熵稳定格式

High resolution entropy stable scheme for ideal MHD equations
下载PDF
导出
摘要 针对磁流体力学方程,提出一种基于限制器机制的熵稳定格式.新格式的构造方法与TVD格式类似,利用通量限制函数将高阶熵守恒格式与一阶熵稳定格式结合.得到的新格式保有熵守恒格式和熵稳定格式的优点,可以准确地捕捉激波,同时在解的间断区域避免非物理现象的产生、在解的光滑区域具有高精度,从而达到高分辨率的效果.将所得格式的数值结果与熵守恒格式和熵稳定格式的数值结果进行对比,结果表明,新构造的格式具有高分辨率和基本无振荡等良好的特性. A new high resolution entropy stable scheme based on the limiter mechanism is proposed for the ideal magnetohydrodynamics(MHD)equations.The construction technique of the new scheme is similar to that of the TVD schemes.A higher order entropy conservative scheme and a first order entropy stable scheme are combined with a flux limiter function.The new high resolution entropy scheme preserves advantages of the entropy conservative scheme and the entropy stable scheme,capturing shocks accurately while avoiding non-physical phenomena in the regions of the discontinuous solutions and having higher accuracy in the regions of the smooth solutions,thus achieves high resolution.The numerical results such as density,velocity and pressure are presented and compared with that of entropy conservative scheme and entropy stable scheme.Several numerical experiments demonstrate the high resolution property of the new scheme.
作者 李雪 封建湖 程晓晗 张海军 LI Xue;FENG Jianhu;CHENG Xiaohan;ZHANG Haijun(School of Science,Chang′an University,Xi′an 710064,China)
机构地区 长安大学理学院
出处 《纺织高校基础科学学报》 CAS 2018年第1期81-89,共9页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(11601037 11401045 11171043) 中央高校基本科研业务费(310812171002)
关键词 磁流体方程 熵稳定 限制器 高分辨率 magnetohydrodynamics equations entropy stable limiter high resolution
  • 相关文献

参考文献3

二级参考文献31

  • 1Lax P D. Weak solutions of non-linear hyperbolic equations and their numerical computations [ J]. Comm Pure Appl Math, 1954, 7:159 - 193.
  • 2Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[ C ]//11th of SIAM Regional Conference Lectures in Applied Mathematics, 1973.
  • 3Osher S. Riemann solvers, the entropy condition, and difference approximations[ J]. SIAM J Numer Anal, 1984, 21:217 -235.
  • 4Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, I [ J]. Math Comp, 1987, 49: 91 - 103.
  • 5Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[ J]. Aeta Numer, 2004:451 - 512.
  • 6Roe P L. Entropy conservative schemes for Euler equations[ R]. Talk at HYP 2006, Lyon, France. 2006.
  • 7Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[ J]. SIAM Review, 2001,43: 89 - 112.
  • 8Harten A. High resolution schemes for hyperbolic conservation laws[ J]. J Comput Phys, 1983, 49:357 - 393.
  • 9Davis S F. A simplified TVD finite difference scheme via artificial viscosity[J]. SIAM J Sci Star Comput, 1987, 8( 1 ):1 - 18.
  • 10Yee H C. Construction of explicit and implicit symmetric TVD schemes and their applications[ J]. J Comput Phys, 1987, 68: 151 - 179.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部