期刊文献+

基于滑动窗特征融合的深信度网络驾驶行为识别 被引量:3

Driving behavior recognition algorithm for deep belief network based on sliding window feature fusion
下载PDF
导出
摘要 针对动态突变行为原始信息量较少造成的行为不易区分以及浅层结构分类算法分类正确率较低的问题,提出一种基于滑动窗特征融合的深信度网络驾驶行为识别算法。采用从手机传感器中获取的三轴加速度数据进行预处理后,利用端点检测算法确定行为切换点,通过滑动窗实时提取时间序列信息并计算序列片段的时频域特征,选取有效特征后,融合原始行为信息与特征建立完整时间序列段作为受限玻尔兹曼机的输入,优化预设参数的多隐层受限玻尔兹曼机对输入端信息的特征进行提取,最终通过深信度网络(deep belief network,DBN)实现驾驶行为的识别。实验结果表明,改进的滑动窗特征融合的深信度网络驾驶行为识别算法整体识别率为98.4%,能有效进行驾驶行为的识别。 This paper proposed a driving behavior recognition algorithm based on feature fusion of acceleration data for deep belief network to solve the problem of the original small amount of information for dynamic mutation behavior,difficult to distinguish the behavior and took the major classification algorithms into consideration.It obtained the three-axis acceleration data from the mobile phone and after pretreatment utilizing endpoint detection algorithm to determine the switching point,the time-frequency domain feature calculated when time-series information extracted through a sliding window in real time,fusing original signals with feature as restricted Boltzmann machine’s input,optimized the multiple hidden layers restricted Boltzmann machine for input’s feature information extraction,and then through the DBN to achieve recognition.Driving behavior results show that the improved driving behavior recognition accuracy is 98.4%,which can effectively identify driving behavior.
作者 王忠民 李卓 范琳 Wang Zhongmin;Li Zhuo;Fan Lin(School of Computer Science&Technology,Xi’an University of Posts&Telecommunications,Xi’an 710121,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第4期1096-1100,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61373116) 陕西省科技统筹创新工程计划资助项目(2016KTZDGY04-01) 陕西省教育厅资助项目(15JK1653) 西安邮电大学青年教师科研基金资助项目(ZL2014-29) 西安邮电大学研究生创新基金资助项目(114-602080109)
关键词 深信度网络 驾驶行为识别 加速度 特征融合 滑动窗 deep belief network driving behavior recognition acceleration feature fusion sliding window
  • 相关文献

参考文献3

二级参考文献54

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献645

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部