期刊文献+

黎曼流形上的多模态医学图像配准

Multimodal image registration of medical images on Riemannian manifold
下载PDF
导出
摘要 针对传统多模态配准方法忽视图像的结构信息和像素间的空间关系,并假定灰度全局一致的前提,提出了一种在黎曼流形上的多模态医学图像配准算法。首先采用线性动态模型捕捉图像高维空间的非线性结构和局部信息;然后通过参数化动态模型构造出一种李群群元,形成黎曼流形,继而将流形嵌入到高维的再生核希尔伯特空间;最后在核空间上学习出相似性测度。仿真和临床数据实验结果表明,该算法在刚体配准和仿射配准精度上均优于传统互信息方法和基于邻域的相似性测度学习方法。 Mutual information based multimodal registration fails to consider the image structure information and spatial relationship among pixels,and assumes that there exists a global statistical relationship between anatomic individuals.This paper presented an algorithm for multimodal image registration of medical images on Riemannian manifold.Firstly,it took advantage of a linear dynamic model(LDM)to capture high-dimensional spatial nonlinear information of the image,then parameterized LDM and constituted Lie group elements,which formed Riemannian manifold.Secondly,it embeded Riemannian manifold to a high-dimensional Hilbert space.Finally,it learnt a similarity measure in Hilbert space.Results from numerical comparative experiments on both synthetic data and clinical data show that compared to the traditional mutual information algorithm and neighborhood based learning similarity measure algorithm,the proposed algorithm obtains better registration accuracy.
作者 刘薇 陈雷霆 Liu Wei;Chen Leiting(School of Computer Science&Engineering,University of Electronic Science&Technology of China,Chengdu 611731,China;Chengdu Vocational&Technical College of Industry,Chengdu 610218,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第4期1241-1245,共5页 Application Research of Computers
基金 广东省教育厅与科技厅科研联合资助项目(2012A090300001)
关键词 多模态 线性动态模型 相似性测度 黎曼流形 配准 multimodal linear dynamic model similarity measure Riemannian manifold registration
  • 相关文献

参考文献1

二级参考文献12

  • 1Zitova B,Flusser J.Image registration methods:A survey[J].Imag.&Vision Comput.,2003,21(9):772-1000.
  • 2Thirion J P.Image matching as a diffusion process:an analogywith Maxwel’ls Demons[J].Med Imag A-nal,1998,2(3):243-260.
  • 3B K P Horn,B G.Schunck.Determining optical flow[J].Art-ificial Intelligence,1981,17:185-203.
  • 4Zhang Y J.Improving the accuracy of direct histogram specif-ication[J].Electron Lett,1992,28(3):213-214.
  • 5Coltuc D,Bolon P,Chassery JM.Exact histogram specification[J].IEEE Trans Image Processing,2006,15(5):1143-1152.
  • 6Fred L Bookstein.Principal warps:Thin-plate splines and thedecomposition of deformations[J].IEEE Transactions on Pat-tern Analysis and Machine Intelligence,1989,11(6):567-585.
  • 7Evans A C.BrainWeb:Online Simulated Brain Database[EB/OL].http://www.bic.mni.mcgill.ca/brainweb,2006-06-08/2007-03-01.
  • 8J Maintz,MViergever.A survey ofmedical image registration[J].Medical Image Analysis,1998,2(1):1-16.
  • 9Xu H K,Jiang M Y,Yang M Q.A new landmark selectionmethod for non-rigid registration of medical brain images[A].2010 10th International Conference on Signal Process-ing,Vol.II[C].Beijing:IEEE Press,2010.920-923.
  • 10王安娜,薛嗣麟,俞跃,孙静.基于改进光流场模型的医学图像配准方法[J].中国图象图形学报,2010,15(2):328-333. 被引量:5

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部