期刊文献+

结合分水岭分割的合成核SVM高光谱分类 被引量:3

Combining Watershed Segmentation with Composite-Kernels for Hyperspectral Image Classification
下载PDF
导出
摘要 高光谱图像丰富的光谱信息使其在目标检测、地物分类等领域都具有重要应用,分类作为高光谱应用的重要中间步骤引起了广泛关注。高光谱图像空间信息刻画了光谱像素点与近邻关系,可以较好地弥补单纯使用光谱信息难以解决的同物异谱、同谱异物以及高维小样本等问题。传统预处理方式空间信息的使用是基于固定结构(如方窗)选择空间近邻以计算空间特征辅助分类,但会因窗口大小而影响空间特征质量。为此本文提出了结合分水岭分割的合成核支持向量机(Support vector machine,SVM)高光谱分类,根据分水岭分割图自适应选择优质的空间近邻,然后通过合成核SVM有效地把空间信息融入到原光谱信息分类中。实验表明,本文方法更好地利用了空间信息,实现在少量样本下高光谱图像的快速高精度分类。 Hyperspectral images have been widely used in target dectection terrain classification and so on owing to its rich spectral information.Classification,being the fundamental step to further explore the hyperspectral images,attracts wider concern.The spatial information describes the connections between pixels with its spatial neighbors which can help to solve the problems like metameric substance of same spectrum,metameric spectrum of same substance and insufficient labeled samples with a high dimension while the spectral information cannot handle well.The traditional preprocessing uses a structure element to obtain the spatial neighbors and assist the last classification with the extracted spatial features.It is obvious that the structure element matters,however one cannot find a suitable size to meet all demands.For dealing with this,a method combing watershed segmentation with composite-kernels support vector machine(SVM)is prposed.It is the characteristics of over segmentation that we use to get a self adapting spatial neighbors,containing less dissimilar pixels and being more discriminant for every pixel,then we fuse the spatial features and the spectral through the composite kernels SVM and give a reliable judgement.Experiments show that the proposed method can make a better use of the spatial imformation and achieve a high accuracy with limited training samples.
作者 赵振凯 杨明 Zhao Zhenkai;Yang Ming(College of Computer Science,Nanjing Normal University,Nanjing,210000,China)
出处 《数据采集与处理》 CSCD 北大核心 2018年第1期132-143,共12页 Journal of Data Acquisition and Processing
基金 江苏省自然科学基金重点重大专项(BK2011005)资助项目 江苏省自然科学基金(BK2011782)资助项目 国家自然科学基金面上(61272222)资助项目
关键词 图像分类 高光谱图像 分水岭分割 空间近邻 合成核支持向量机 image classification hyperspectral image watershed segmentation spatial neighbors composite kernels SVM
  • 相关文献

参考文献3

二级参考文献40

  • 1Shaw G, Manolakis D. Signal processing for hyperspec- tral image exploitation. Signal Processing Magazine, 2002, 19(1): 12-16.
  • 2Hughes G. On the mean accuracy of statistical pattern rec- ognizers. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
  • 3Camps-Vails G, Gomez-Chova L, Munoz-Mari J, Vila- Frances J, Calpe-Maravilla J. Composite kernels for hyper- spectral image classification. IEEE Geoscienee and Remote Sensing Letters, 2006, 3(1): 93-97.
  • 4Gurram P, Heesung K. Contextual SVM using Hilbert space embedding for hyperspectral classification. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1031-1035.
  • 5Fauvel M, Benediktsson J A, Chanussot J, Sveinsson J R. Spectral and spatial classification of hyperspectral data us- ing SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814.
  • 6Tarabalka Y, Fauvel M, Chanussot J, Benediktsson J A. SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 736-740.
  • 7Kuo B C, Landgrebe D A. Nonparametric weighted fea- ture extraction for classification. IEEE Transactions on Geo- science and Remote Sensing, 2004, 42(5): 1096-1105.
  • 8Chang Y L, Liu J N, Han C C, Chen Y N. Hyperspectral image classification using nearest feature line embedding ap- proach. IEEE Transactions on Geoscience and Remote Sens- ing, 2014, 52(1): 278-287.
  • 9Li W, Prasad S, Fowler J E, Bruce L M. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Transactions on Geoscience and Re- mote Sensing, 2012, 50(4): 1185-1198.
  • 10Shi Q, Hang L P, Du B. Semisupervised discriminative lo- cally enhanced alignment for hyperspectral image classifica- tion. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4800-4815.

共引文献2282

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部