期刊文献+

改进相似性度量模型的单幅图像自学习超分辨算法 被引量:3

Single Image Super-Resolution from Local Self-examples Based on an Improved Similarity Measurement Model
下载PDF
导出
摘要 在自学习超分辨算法中,高低分辨率图像块匹配是否准确是算法的关键。在高低分辨率图像块匹配过程中,考虑图像块纹理结构的重要性,提出了一种基于纹理约束的图像块相似性度量模型,应用该模型完成了高低分辨率图像块更为准确的匹配,使超分辨结果图像的细节更加丰富,进一步提高了图像质量。该算法仅使用了单幅低分辨率图像自身的相关先验信息,有效提升了图像的空间分辨率。实验结果表明,与双三次插值算法、自相似学习超分辨算法相比,本文提出的算法超分辨视觉效果更好,并且在客观评价指标中同样表现良好。 The accurate matching of high and low resolution image blocks is the key of self-examples super resolution algorithm.In the process of blocks matching of high and low resolution images,considering the importance of texture image block structure,a similarity metric model based on constrained texture image patch is proposed in this paper.By using this exact matching model,the detail of super-resolution result image is further enriched,and the image quality is improved also.The new algorithm has the particular advantage of improving spatial resolution of image only using prior information of single low-resolution image itself.The experimental results show that the proposed algorithm has a better super-resolution visual effect compared with the bicubic interpolation algorithm and the local self-examples super-resolution algorithm,and it also has a good performance in the objective evaluation index.
作者 赵丽玲 孙权森 Zhao Liling;Sun Quansen(School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,China;School of Information and Control,Nanjing University of Information Science&Technology,Nanjing,210044,China)
出处 《数据采集与处理》 CSCD 北大核心 2018年第2期240-247,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61273251)资助项目
关键词 相似性度量 方差 自学习 单幅图像 超分辨率 similarity measure variance self-example single image super-resolution
  • 相关文献

参考文献5

二级参考文献73

  • 1Barreto D, Alvarez L D, Molina R. Region-based su- per-resolution for compression[J]. Multidimensional Systems and Signal Processing, 2007, 18 (2) .. 59-81.
  • 2Yang Shuyuan, Wang Min, Chen Yiguang, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J]. IEEE Transactions on Image Processing, 2012, 9(21) ..4016-4028.
  • 3Toshie M, Yasutaka M, Shunsuke I. Reconstructive video coding system[C]// The 1st IEEE global con- ference on consumer electronics. Tokyo:Consumer E- lectronics Press, 2012,553-555.
  • 4Jeffrey G, Calvin C, Michael F. Hybrid video com- pression using selective keyframe identiffcation and patch-based super-resolution[C]//IEEE Internation- al Symposium on Multimedia. Dana Point CA.. IEEE Computer Society Press,2011,105 ; 111.
  • 5Zhiming P, Hongkai X. Sparse spatio-temporal repre- sentation with adaptive regularized dictionaries for super-resolution based video coding[C]// Data Com- pression Conference. Snowbird:IEEE Computer Soci- ety Press,2012,139 : 149.
  • 6Zeng H, Houqiang L, Weiping L. An adaptive down- sampling based video coding with hybrid super-reso- lution methodiC] ff Circuits and Systems. Seoul: IEEE Circuits and Systems Press, 2012,504 : 508.
  • 7Minmin S, Ping X, Ci W. Down-sampling based vid- eo coding using super-resolution technique [J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2011, 6(21):755-766.
  • 8Hasan F. Decoder-side super-resolution and frame in- terpolation for improved H. 264 video coding[C]// Data Compression Conference. Snowbird: IEEE Data Compression Press, 2013,83 : 93.
  • 9Zhong Guoyun, Qing Linbo, Wu Di,et al. An adap- tive horizontal and vertical transform skip scheme for H. 264/AVC[J]. Optical Engineering, 2012,51 ( 9 ) : 097402-1- 097402-11.
  • 10Yang Jianchao, John Wright, Thomas Huang,et al. Image super-resolution via sparse representation[J]. IEEE Trans on Image Processing, 2010, 19 (11) 2861-2973.

共引文献213

同被引文献43

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部