期刊文献+

基于中低层结合的图像感兴趣区域标注 被引量:1

Region of Interest Marked by Low and Middle Levels
下载PDF
导出
摘要 图像感兴趣区域标注是近年来图像处理领域的重要研究课题之一。利用中低层次信息相结合的方式确保中低层信息相互补充,可以得到可靠结果。中层次显著图由改进的Harris角点形成的凸包区域与GBR超像素聚类结果相结合得到,低层次信息由不同权重的高斯差分滤波器对图像进行处理得到。最后通过加权融合两个层次显著图得到最终结果。本文利用微软亚洲研究院公开数据库对实验结果进行验证,并选取其他前沿方法进行对比,从主观和客观角度对实验结果进行判断,本文方法结果较好,可准确定位显著度区域并高亮表示,同时可有效消除背景噪声。 Image marking of the region of interest is an important research topic in image processing in recent years.The combination of low and middle levels can ensure the result has both of their information.First,we get the middle-level coarse saliency map by using the boosting Harris to make a convex hall and superpixels clustered by GBR.And then we weight different Gaussian filters to get the low-level saliency map.The final saliency map is combinated by middle-level saliency map and low-level saliency map.Experiments on the public databases coming from Microsoft Research Asia show that the proposed algorithm performs better than state-of-art algorithms not only on subjective evaluation but also on objective evaluation,and it is effective at the eliminate of background noise and outstanding at making the saliency regions high light.
作者 周洁 王士同 Zhou Jie;Wang Shitong(School of Digital Media,Jiangnan University,Wuxi,214122,China)
出处 《数据采集与处理》 CSCD 北大核心 2018年第2期379-388,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61170122)资助项目。
关键词 感兴趣区域 显著图 GBR 改进FT region of interest saliency map GBR improved FT
  • 相关文献

参考文献3

二级参考文献53

  • 1朱光喜,戴声奎,李霄,刘文予,张江山.一种低码率下的新型码率控制策略[J].计算机科学,2006,33(1):60-63. 被引量:1
  • 2李子印,朱善安,刘丽芳.支持ROI优先编码策略的自适应码率控制算法[J].光电工程,2006,33(4):105-110. 被引量:7
  • 3刘峰.视频图像编码技术及国际标准[M].北京:北京邮电出版社,2006.
  • 4中华人民共和国国家质量监督检验检疲总局,中国国家标准经管理委员会.安全防范监控数字视音频编解码技术要求(GB/T25724-2010)[S].北京:中国标准出版社,2011.
  • 5Ma Siwei,Gao Wen, Lu Yan. Rate-distortion analy- sis for H. 264/AVC video coding and its application to rate control [J]. Circuits and Systems for Video Technology, IEEE, 2005 (15) :1533-1544.
  • 6hti L, Koeh C. Computational modeling of visual attention [ J]. Nature Reviews Neuroseienee, 2001, 2 (3) : 194-203. [DOI 10. 1038/35058500].
  • 7Koch K, Mclean J, Segev R, et al. How much the eye tells the brain [ J ]. Current Biology, 2006, 14 ( 16 ) : 1428-1434. [DOI : 10. 1016/j. cub. 2006. 05. 056 ].
  • 8Ladicky L, Russell C, Kohli P, et al. Associative hierarchical random fields [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 31 (23) : 1-4. [DOI: 10. 1109/ TPAMI. 2013. 165 ].
  • 9Itti L, Koch C, Niebur E, et al. A model of saliency-based visu- al attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 ( 11 ) : 1254-1259. [DOI: 10. 1109/34. 730558].
  • 10Harel J, Koch C, Perona P, et al. Graph-Based Visual Saliency [ M ]. Vancouver: MIT Press, 2007: 545-552. ISBN: 9780262256919.

共引文献7

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部