期刊文献+

折返插值法 被引量:1

Interpolation with back turn transform
下载PDF
导出
摘要 现今存在许多以显式形式表示插值函数的一维插值方法。为了使这些方法能够用于解决有序数据点的插值问题,首先提出了一种有序数据点插值问题的表达形式,在这种形式中,插值函数以显式方程的形式进行表示。之后,提出了一种带数据点变换的插值思想,即通过添加数据点变换来克服传统插值方法的局限性。然后,提出了一种特殊的数据点变换--折返变换,通过添加折返变换使传统的显式方法能够用于解决有序数据点的插值问题。最后展示了两个数值算例。 Nowadays,there exist lots of one-dimensional interpolation methods whose interpolation function is expressed in explicit form.In order to make these methods solve the problem of interpolation for sequential nodes,first,an expression form of the interpolation problem for sequential nodes is presented,in which the interpolation function is expressed in explicit form.Then an idea of interpolation with node transform is proposed,which can overcome the limitation of the traditional interpolation methods by adding a node transform.After that,a special transform called Back Turn Transform is proposed.By adding the Back Turn Transform,the traditional explicit methods can be used to solve the problem of interpolation for sequential nodes.Finally,two numerical examples are demonstrated.
作者 贺颖 常锦才 HE Ying;CHANG Jincai(College of Information Engineering,North China University of Science and Technology,Tangshan,Hebei 063210,China;College of Sciences,North China University of Science and Technology,Tangshan,Hebei 063210,China)
出处 《中国科技论文》 CAS 北大核心 2018年第2期186-189,共4页 China Sciencepaper
基金 河北省留学回国人员科技活动资助项目(C2015005014) 国家自然科学基金资助项目(51674121 61702184)
关键词 插值法 带数据点变换的插值 折返变换 折返插值法 有序数据点插值 interpolation method interpolation with node transform back turn transform interpolation with back turn transform interpolation for sequential nodes
  • 相关文献

参考文献1

二级参考文献12

  • 1吴卉,邓建松.球形控制点的Bézier曲面的降阶逼近[J].中国科学技术大学学报,2006,36(6):582-589. 被引量:3
  • 2Farin G. Curves and Surfaces in Computer Aided Geometric Design [M]. 3rd ed.. San Diego, CA: Academic Press, 1993.
  • 3Sederberg T W, Farouki R T. Approximation by interval Bezier curves [J]. IEEE Computer Graphics and Applications, 1992, 12 (5) : 87-95.
  • 4Patrikalakis N M. Robustness issues in geometric and solid modeling I-J]. Computer Aided Design, 2000, 32:629-689.
  • 5Lin Q, Rokne J G. Disk Bezier curves [J]. Computer Aided Geometric Design, 1998, 15(7):721-737.
  • 6Chen F L, Yang W. Degree reduction of disk Bezier curves [J]. Computer Aided Geometric Design, 2004, 21(3) :263-280.
  • 7Sendra R J, Winkler F. Tracing index of rational curve parametrizations [J]. Computer Aided Geometric Design, 2001, 18(8) :771-795.
  • 8Lim C G. Universal parametrization in constructing smoothly-connected B-spline surfaces [ J ]. Computer Aided Geometric Design, 2002, 19(6):465-478.
  • 9Foley T A. Local control of interval tension using weighted splines [J]. Computer Aided Geometric Design, 1986, 3(4):281-294.
  • 10Goshtasby A, ONeill W D. Surface fitting to scattered data by a sum of Gaussians [J]. Computer Aided Geometric Design, 1993, 10(2):143-156.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部