期刊文献+

基于用户兴趣的视频片段提取方法 被引量:1

Video highlight extraction based on users' interests
下载PDF
导出
摘要 视频精彩片段提取是视频摘要、检索等领域的热点研究问题。若自动提取视频片段能考虑用户个性化需求,将能在电影推荐、新闻摘要等实际应用场景中发挥巨大作用。针对基于用户兴趣的视频片段提取问题,提出了使用互联网图像的用户感兴趣视频精彩片段提取框架,使用近义语义联合组权重模型权衡由不用的描述词检索得到的存在差异但语义相近的图像组,根据图像组与视频内容的相关性为不同的图像组分配不同的权重。实验结果表明了所提出的方法对提取用户感兴趣内容的有效性。 Extracting highlights is of great interest in video summary,retrieval and other fields.If the automatic video clip can take into account the user's personalized needs,it will be able to play a great role in the actual application scenes such as movie recommendation,news summary and so on.For the extraction of user interest based video clip,a novel joint group weighting learning framework is proposed to leverage different but related groups of knowledges learnt from the Web images to videos.Under this framework,the weights of different groups are learnt in as a joint optimization problem,and each weight represents how contributive the corresponding image group is to the knowledge transferred to the video.The experimental results show the effectiveness of the proposed method to extract the content of interest of the user.
作者 邹玲 俞璜悦 王晗 ZOU Ling;YU Huangyue;WANG Han(Digital Media School,Beijing Film Academy,Beijing 100088,China;School of Information Science and Technology,Beijing Forest University,Beijing 100083,China)
出处 《中国科技论文》 CAS 北大核心 2018年第2期202-207,共6页 China Sciencepaper
基金 北京电影学院2017年度校级科研项目(XP201703)
关键词 视频检索 视频精彩片段提取 视频分析 知识迁移 video retrieval highlights extraction video analysis knowledge transfer
  • 相关文献

参考文献2

二级参考文献25

  • 1Niebles Juan, Chen Chih-Wei, Li Fei Fei. Modeling tempo ral structure of decomposable motion segments for activity classification//Proceedings of the llth European Conference on Computer Vision. Crete, Greece, 2010:392 405.
  • 2Naphade M R. Statistical techniques in video data manage- ment//Proceedings of the IEEE Workshop on Multimedia Signal Processing. Virgin Islands, USA, 2002: 210-215.
  • 3Farhadi A, Forsyth D, White R. Transfer learning in sign language//Proceedings of the IEEE Conference on Computer Vision" and Pattern Recognition (CVPR). Minneapolis, USA, 2007z 1-8.
  • 4Wang H, Huang H, Nie F, Ding C. Cross-language Web page classification via dual knowledge transfer using nonnega tive matrix tri-factorization//Proceedings of the 34th Interna- tional ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China, 2011:933 942.
  • 5Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach//Proeeedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain, 2011: 999 -1006.
  • 6Kulis B, Saenko K, Darrell T. What you saw is not what you get Domain adaptation using asymmetric kernel trans forms//Proceedings of the 2011 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colorado, USA, 2011:1785-1792.
  • 7Gong B, Shi Y, Sha F, Grauman K. Geodesic flow kernel for unsupervised domain adaptation//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni tion (CVPR). Providence, USA, 2012 : 2066-2073.
  • 8Wu Xinxiao, Jia Yunde. View invariant action recognmon using latent kernelized structural SVM//Proeeedings of the 12th European Conference on Computer Vision, Part V. Florence, Italy, 2012:411-424.
  • 9Cao L, Liu Z, Huang T S. Cross dataset action detection// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Fransisco, USA, 2010:1998 -2005.
  • 10Yang J, Yan R, Hauptmann A. Cross-domain video concept detection using adaptive SVMs//Proceedings of the 15th International Conference on Multimedia. Augsburg, Germany, 2007:188-197.

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部