期刊文献+

基于深度学习的输电线路关键部件视觉检测方法的研究进展 被引量:18

Research progress of visual detection methods for transmission line key components based on deep learning
下载PDF
导出
摘要 由于电网规模增长,直升机、无人机巡线的大量应用,产生的航拍图像数量剧增,使输电线路关键部件视觉检测与运检人员数量配置的矛盾日益突出。虽然深度学习技术可显著提高目标检测的准确率,但航拍巡线图像背景复杂,关键部件之间的相互遮挡,标注数据量较少等特点,限制了航拍输电线路关键部件视觉检测的工程应用。本文分析了深度学习中目标检测模型的现状,总结了基于深度学习的输电线路关键部件视觉检测方法的研究进展,并指出了构建输电线路关键部件图像数据库、建立专业的输电线路关键部件知识图谱以及将知识图谱与深度模型相融合对输电线路关键部件检测的重要性。 The rapid growth of the power grid and large number of applications of helicopters and unmanned aerial patrol lines have resulted in a dramatic increase in the number of aerial images.The contradiction between the image detection of key components of transmission lines and the number of inspection personnel has become increasingly prominent.Although deep learning can significantly improve the object detection accuracy,the features of complex background the aerial patrol line image,mutual occlusion between the key components and small amount of annotation data limit the engineering applicability of transmission line key components detection.This paper analyses the status of object detection models in deep learning,and summarizes the progress of visual detection methods for transmission line key components based on deep learning.In this paper the importance of constructing of the image database of the key components of transmission lines,establishing knowledge graph of the key components of aerial transmission lines,and combining knowledge graph with deep models are pointed out.
作者 赵振兵 崔雅萍 ZHAO Zhenbing;CUI Yaping(School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)
出处 《电力科学与工程》 2018年第3期1-6,共6页 Electric Power Science and Engineering
基金 国家自然科学基金项目(61401154 61773160) 河北省自然科学基金项目(F2016502101) 中央高校基本科研业务费专项资金项目(2018MS095)
关键词 输电线路 关键部件 视觉检测 深度学习 知识图谱 transmission line key components visual detection deep learning knowledge graph
  • 相关文献

参考文献8

二级参考文献63

共引文献275

同被引文献239

引证文献18

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部