期刊文献+

两类可解群双Cayley图的Hamilton性

Hamiltonian Property in Bi-Cayley Graphs of Two Kinds of Finite Solvable Groups
下载PDF
导出
摘要 该文研究双Cayley图Γ∶=BCay(G,S)的Hamilton性.通过Γ所对应的(单)Cayley图,G的商群的双Cayley图,乃至Γ的导出子图的Hamilton圈来构造Γ的Hamilton圈.获得了关于pq阶群(其中p>q>2是素数)和广义四元数群Q4r(r为奇素数)双Cayley图Hamilton性的一些结果. For a bi-Cayley graphΓ∶=BCay(G,S),its Hamiltonian property is researched in this paper,and its Hamiltonian cycles are constructed by those Hamiltonian cycles of the corresponded(single)Cayley graph,of the bi-Cayley graph on G’s quotient group,and of its induced subgraphs.Furthermore,some results about the Hamiltonian property of bi-Cayley graphs on the group which has order pq(p>q>2 are prime)or on the generalized quaternion group Q4r(r is odd prime)are obtained.
作者 王梦雨 徐尚进 谢金华 杨霞 WANG Meng-yu;XU Shang-jin;XIE Jin-hua;YANG Xia(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China)
出处 《广西师范学院学报(自然科学版)》 2018年第1期8-12,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金(10961004 11361006 11461004) 广西自然科学基金(2015GXNSFAA139001)
关键词 双CAYLEY图 HAMILTON图 pq阶群 广义四元数群 bi-Cayley graph Hamilton graph group with order pq generalized quaternion group
  • 相关文献

参考文献5

二级参考文献31

  • 1李登信.几类Cayley图的Hamilton性[J].渝州大学学报,1994,11(3):1-5. 被引量:2
  • 2李登信.Cayley图的边Hamilton性[J].系统科学与数学,1995,15(3):266-268. 被引量:6
  • 3徐尚进,张翠,赵旭波,吴正飞.4p阶内2-闭群的m-DCI-性[J].广西师范大学学报(自然科学版),2006,24(1):45-48. 被引量:7
  • 4徐明曜.有限群导引[M].北京:科学出版社,2001.
  • 5CURRAN S J, GALLIAN J A. Hamihonian cycles and paths in cayley graphs and digraphs-Asurvey [J]. Discrete math, 1996,156:1-18.
  • 6WITTED. Cayley digraphs of prime-power order are hamiltonian[J]. J Combin. Theory Ser B, 1986,40: 107-112.
  • 7XU Ming-yao.Automorphism groups and isomorphisms of Cayley digraphs[J].Discrete Math,1998,182:309-319.
  • 8MUZYCHUK M.Adam's conjecture is true in the square-free case[J].J Combin Theory:A,1995,72:118-134.
  • 9MUZYCHUK M.On Adam's conjecture for circulant graphs[J].Disc Math,1997,167/168:497-510.
  • 10LI Cai-heng.Isomorphisms of finite Cayley graphs[D].Crawley:School of Mathematics and Statistics of University of Western Australia,1997.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部