期刊文献+

超高维数据的稳健秩条件特征筛选

Robust Rank Conditional Feature Screening for Ultrahigh Dimensional Data
下载PDF
导出
摘要 针对超高维变量筛选问题,提出一种新的稳健秩条件特征筛选方法,简称为RRCSIS。该方法不依赖于模型设定,并且可以同时处理条件特征筛选和特征筛选。数值模拟表明,RRCSIS在因变量或者自变量含有厚尾分布或者含有异常值时表现都很稳健,并且明显优于其他筛选方法。此外,为了识别出联合相关而边际不相关的变量,还提出了一种迭代的筛选过程,即IRRCSIS。最后,通过一个实例分析说明了该方法的有效性。 Ultrahigh variable screening plays an important part in statistical research.In this paper,we introduce a new robust rank conditional feature screening method(RRCSIS,for short)based on the rank of a random variable.The newly proposed screening procedure does not depend on any model assumption and also it can deal with both the conditional feature screening and feature screening in a unified way.Simulation studies show that RRCSIS is robust to heavy-tailed distributions or outlier in both directions of response and covariates and RRCSIS is obviously superior to other screening methods.Besides,we also propose an iterative screening procedure(IRRCSIS,for short)to detect important predictors that are marginally uncorrelated but jointly correlated to the response.And we further illustrate its effectiveness through a real data example.
作者 李向杰 张景肖 LI Xiang-jie;ZHANG Jing-xiao(Center for Applied Statistics Renmin University of China,Beijing 100872,China;School of Statistics,Renmin University of China,Beijing 100872,China)
出处 《统计与信息论坛》 CSSCI 北大核心 2018年第4期6-12,共7页 Journal of Statistics and Information
基金 中国人民大学科学研究基金项目(中央高校基本科研业务费专项资金资助)项目(17XNH088)
关键词 条件特征筛选 超高维数据 稳健秩 模型自由 conditional feature screening ultrahigh-dimensional data robust rank model-free
  • 相关文献

参考文献4

二级参考文献28

  • 1Huang J,Breheny P,Ma S.A Selective Review of Group Selection in High Dimensional Models[J].Statistical Science,2012,27(4).
  • 2Fan J,Lv J.Sure Independence Screening for Ultrahigh Dimensional Feature Space[J].Journal of the Royal Statistical Society,Ser.B,2008,70(5).
  • 3Hall P,Miller H.Using Generalized Correlation to Effect Variable Selection in Very High Dimensional Problems[J].Journal of Computational and Graphical Statistics,2009,18(3).
  • 4Fan J,Samworth R,Wu Y.Ultrahigh Dimensional Feature Selection:Beyond the Linear Model[J].Journal of Machine Learning Research,2009(10).
  • 5Fan J,Song R.Sure Independence Screening in Generalized Linear Models With NP-Dimensionality[J].The Annals of Statistics,2010,38(6).
  • 6Fan J,Feng Y,Song R.Nonparametric Independence Screening in Sparse Ultra-high-dimensional Additive Models[J].Journal of the American Statistical Association,2011,106(494).
  • 7Fan J,Ma Y,Dai W.Nonparametric Independence Screening in Sparse Ultra-high-dimensional Varying Coefficient Models[J].Journal of the American Statistical Association,2014,109(507).
  • 8Liu J,Li R,Wu S.Feature Selection for Varying Coefficient Models with Ultrahigh-dimensional Covariates[J].Journal of the American Statistical Association,2014,109(505).
  • 9Segal M,Dahlquist D,Conklin B.Regression Approach for Microarray Data Analysis[J].Journal of Computational Biology,2003,10(6).
  • 10Li R,Wei Z,Zhu L.Feature Screening Via Distance Correlation Learning[J].Journal of the American Statistical Association,2012,107(499).

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部