期刊文献+

一种基于变长聚类的个性化匿名保护方法 被引量:3

Variable-length clustering-based approach for personalization anonymization protection
下载PDF
导出
摘要 针对链接攻击导致的隐私泄露问题,以及为了尽可能减少匿名保护时产生的信息损失,提高发布数据集的可用性,提出一种面向个体的基于变长聚类的个性化匿名保护方法。该方法充分考虑记录权重值对聚类簇中心结果的影响,以提高数据的可用性,并对敏感属性值进行分级处理,将敏感属性值分成三个等级类,响应不同个体的保护需求。理论分析和实验结果表明,该方法能满足敏感属性个性化保护需求,同时可有效地降低信息损失,效率较高,生成的匿名数据集具有较好的可用性。 For the privacy disclosure caused by linking attack,while in order to reduce the information loss of anonymous protection and improve the availability of published data sets,this paper presents a personalization anonymous anonymization protection method based on variable-length clustering for individual.The method fully considers the record weights on the result of clustering cluster-center to achieve better availability of data,and classification processing of sensitive attribute values.The sensitive attribute values are divided into three levels,meeting the protection requirements of different individuals.Theoretical analysis and experimental results show that the method can meet the personalized requirements to protect sensitive attributes,effectively reducing the loss of information at the same time,and with high efficiency.The generated anonymous data set has good availability.
作者 李丹 凌捷 LI Dan;LING Jie(Faculty of Computer,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期85-90,共6页 Computer Engineering and Applications
基金 广东省科技计划项目(No.2014A010103029 No.2014B090908010 No.2015B010128014) 广州市重大科技专项(No.201604010048 No.201604010077)
关键词 隐私保护 数据发布 变长聚类 个性化匿名 信息损失 privacy protection data publishing variable-length clustering personalization anonymization information loss
  • 相关文献

参考文献9

二级参考文献89

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2吴溥峰,张玉清.数据库安全综述[J].计算机工程,2006,32(12):85-88. 被引量:96
  • 3Samarati P,Sweeney L.Generalizing data to provide anonymity when disclosing information (abstract)[A].Proceedings of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems[C].Seattle,WA,USA:IEEE press,1998.188.
  • 4Samarati P.Protecting restondents' identities in microdata release[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(6):1010-1027.
  • 5Tiancheng Li,Ninghui Li.Towards optimal k-anonymization[J].Data and Knowledge Engineering,2008,65(1):22-39.
  • 6Machanavajjhala A,Gehrke J,Kifer D.L-diversity:privacy beyond k-anonymity[A].Proceedings of the 22nd International Confence e on Data Engineering[C].Atlanta,GA,USA:IEEE Press,2006.24-36.
  • 7Truta T M,Vinay B.Privacy protection:p-sensitive kanonymity property[A].Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW)[C].Washington,DC,USA:IEEE Computer Society,2006.94.
  • 8Wong C R,Li J,Fu A,et al.(α,k)-anonymity:an enhanced k-anonymity model for privacy preserving data publishing[A].Proceedings of the 12th ACM SIGKDD Conference[C].Philadelphia,PA:ACM Press,2006.754-759.
  • 9Ninghui Li,Tiancheng Ii,Venkatasubramanian S.t-Closeness:privacy beyond k-anonymity and l-diversity[A].Proceedings of the 23rd International Conference on Data Engineering (ICDE)[C].Istanbul,Turkey:IEEE Press,2007.106-115.
  • 10Xiaokui Xiao,Yufen Tao.Personalized privacy preservation[A].Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data[C].Chicago,Illinois,USA:ACM Press,2006.229-240.

共引文献128

同被引文献32

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部