摘要
针对非分类关系抽取中的关系识别问题,提出利用SAO结构和依存句法分析相结合的识别方法。该方法将中文专利领域的非分类关系抽取问题转化为符合SAO结构的识别问题,通过SAO结构中的动词信息可以解决关系识别的问题,并在此基础上,利用依存句法分析得到的依存关系强度结合传统的特征,分别对新特征、词特征、上下文特征、距离特征的有效性进行验证分析。实验结果表明,该方法优于传统方法,也验证了依存句法分析在非分类关系抽取中的可行性。
In order to solve the problem of relation recognition in the extraction of the non-taxonomic relation,this paper proposes a recognition method that combines the Subject-Action-Object(SAO)structure and the dependency syntax.The method transforms the extraction of the non-taxonomic relation in Chinese patent domain into the recognition problem of SAO structure.The recognition problem of relation can be solved by the verbs information in the SAO structure,and on this basis,the traditional features are combined with the dependency strength that is gotten from the dependency syntax.And then,the validity of new features,word features,context features and distance features are verified and analyzed.The experimental results not only indicate that this method is superior to traditional methods,but also verify the feasibility of the dependency syntax in the extraction of the non-taxonomic relation.
作者
马勋
周长胜
吕学强
周建设
MA Xun;ZHOU Changsheng;LV Xueqiang;ZHOU Jianshe(Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,Beijing Information Science&Technology University,Beijing 100101,China;Computing Center,Beijing Information Science&Technology University,Beijing 100192,China;Beijing Advanced Innovation Center for Imaging Technology,Capital Normal University,Beijing 100048,China)
出处
《计算机工程与应用》
CSCD
北大核心
2018年第8期220-225,235,共7页
Computer Engineering and Applications
基金
国家自然科学基金(No.61271304
No.61671070)
北京成像技术高精尖创新中心项目(No.BAICIT-2016003)
国家社会科学基金(No.14@ZH036)
国家社科基金重大项目(No.15ZDB017)
关键词
SAO结构
非分类关系
关系抽取
依存句法
Subject-Action-Object(SAO)structure
non-taxonomic relation
relation extraction
dependency syntax