期刊文献+

基于SAO结构的非分类关系抽取研究 被引量:7

Extraction of non-taxonomic relations based on SAO structure
下载PDF
导出
摘要 针对非分类关系抽取中的关系识别问题,提出利用SAO结构和依存句法分析相结合的识别方法。该方法将中文专利领域的非分类关系抽取问题转化为符合SAO结构的识别问题,通过SAO结构中的动词信息可以解决关系识别的问题,并在此基础上,利用依存句法分析得到的依存关系强度结合传统的特征,分别对新特征、词特征、上下文特征、距离特征的有效性进行验证分析。实验结果表明,该方法优于传统方法,也验证了依存句法分析在非分类关系抽取中的可行性。 In order to solve the problem of relation recognition in the extraction of the non-taxonomic relation,this paper proposes a recognition method that combines the Subject-Action-Object(SAO)structure and the dependency syntax.The method transforms the extraction of the non-taxonomic relation in Chinese patent domain into the recognition problem of SAO structure.The recognition problem of relation can be solved by the verbs information in the SAO structure,and on this basis,the traditional features are combined with the dependency strength that is gotten from the dependency syntax.And then,the validity of new features,word features,context features and distance features are verified and analyzed.The experimental results not only indicate that this method is superior to traditional methods,but also verify the feasibility of the dependency syntax in the extraction of the non-taxonomic relation.
作者 马勋 周长胜 吕学强 周建设 MA Xun;ZHOU Changsheng;LV Xueqiang;ZHOU Jianshe(Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,Beijing Information Science&Technology University,Beijing 100101,China;Computing Center,Beijing Information Science&Technology University,Beijing 100192,China;Beijing Advanced Innovation Center for Imaging Technology,Capital Normal University,Beijing 100048,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期220-225,235,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61271304 No.61671070) 北京成像技术高精尖创新中心项目(No.BAICIT-2016003) 国家社会科学基金(No.14@ZH036) 国家社科基金重大项目(No.15ZDB017)
关键词 SAO结构 非分类关系 关系抽取 依存句法 Subject-Action-Object(SAO)structure non-taxonomic relation relation extraction dependency syntax
  • 相关文献

参考文献2

二级参考文献67

  • 1杜波,田怀凤,王立,陆汝占.基于多策略的专业领域术语抽取器的设计[J].计算机工程,2005,31(14):159-160. 被引量:26
  • 2郑家恒,卢娇丽.关键词抽取方法的研究[J].计算机工程,2005,31(18):194-196. 被引量:41
  • 3Ralph Grishman. 1997. Information Extraction : Tech- niques and Challenges[R]. New York: New York U-niversity, 1997.
  • 4Ralph Grishman, Beth Sundheim. Message Under- standing Conference-6: A Brief History[C]//Proceed- ings of COLING, 1996.
  • 5http://www, itl. nist. gov/iad/mig/tests/ace/[OL].
  • 6http ://www. nist. gov/tac/[OL].
  • 7Martina Naughton, N. Kushmerichand J. Carthy. Event Extraction from Hetergeneous News Sources [C]//Proceedings of AAAI, 2006.
  • 8D. McClosky, M. Surdeanu, C. D. Manning. Event Extraction as Dependency Parsing[C]//Proceedings ofACL-HLT, 2011.
  • 9Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Gu- odong Zhou, Qiaoming Zhu. Using Cross-Entity Infer ence to Improve Event Extraction[C]//Proeeedings ofACL-HLT, 2011.
  • 10Jun Zhao, Feifan Liu. Product Named Entity Recog nition in Chinese Texts[J]. International Journal of Language Resource and Evaluation. 2008, 42 (2) :132- 152.

共引文献302

同被引文献113

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部