期刊文献+

结合中心约束改进聚类算法的社区发现技术

Community discovery based on improved clustering algorithm with central constraints
下载PDF
导出
摘要 进行社区发现时,首先从某一节点开始进行随机行走,计算两个节点之间的对称社会距离,并用此距离来分析两个用户节点之间的相关性。社交网络中存在着关系不均匀的现象,有些个体之间关系非常稠密,而有些却异常稀疏,由此构成的虚拟社区需要用特定的社区发现技术进行挖掘。前人提出过利用可能性C均值聚类算法(PCM)和处理好的社会距离进行社区发现,但通过虚拟社区算法评价的准确度指标发现,对于数据量大,数据粘性强的数据,其聚类效果并不理想。而聚类中心的好坏直接决定着聚类性能的好与坏,因此利用类中心约束方法对PCM算法进行改进,得到的新型聚类算法更加适用于真实网络数据集。实验针对真实数据集,利用准确度指标进行了验证。 In the process of community discovery,it firstly starts a random walk from a node,calculates the symmetrical social distance between two nodes,and uses this distance to analyze the correlation between two user nodes.In the social network,there is a phenomenon of non-uniformity.Some individuals are very dense,while others are very sparse.Therefore,the virtual community needs to be excavated with specific community discovery technology.However,through the accuracy index of virtual community algorithm evaluation,it is found that for the data with large data volume and strong data stickiness,the clustering algorithm of poly-clustering algorithm(PCM)class effect is not ideal.The PCM algorithm is improved with central constraints,the new clustering algorithm is more suitable for the existence of some data missing or there is a large number of noise,the exception point of the real network data set.Experiments are carried out to verify the accuracy of the real data set.
作者 夏洋洋 刘渊 黄亚东 XIA Yangyang;LIU Yuan;HUANG Yadong(School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期265-270,共6页 Computer Engineering and Applications
基金 国家科技支撑计划课题(No.2015BAH54F00) 国家自然科学基金(No.61672264) 国家重点研发计划项目(No.2016YFB0800305)
关键词 对称社会距离 随机行走 可能性C均值算法 准确度指标 symmertrical social distance random walk Possibilistic C-Means(PCM)algorithm accuracy of indicators
  • 相关文献

参考文献4

二级参考文献111

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2田甜,倪林,钱功伟.一种结合社区发现的网页排序算法[J].计算机工程与应用,2007,43(12):116-118. 被引量:2
  • 3HALL L O, GOLDGOF D B. Convergence of the single-pass and on- line fuzzy C-means algorlthms[J]. IEEE Trans on Fuzzy Systems, 2011,19(4) :792-794.
  • 4ZHU L,CHUNG F L,WANG S T. Generalized fuzzy C-means cluste- ring algorithm with improved fuzzy partitions [ J]. IEEE Yrans on Systems Man and Cybernetics,2009,39(3) :578-591.
  • 5DENG Zhao-hong, CAI Ji-shi, CHUNG Fu-Lai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster in- formation[J]. Par'tom Rocognition,2010,43(3) :767-781.
  • 6RAJINI N H, BHAVANI R. Enhancing k-means and kernelized fuzzt C-means clustering with cluster center initialization in segmenting MR] brain images [ C ]//Pmc of International Conference on Electronict Computer Technology. 2011:259-263. [.
  • 7WU K L, YANG M S. Alternative C-means clustering algorithms [ J ]. Pattern Recognition ,2002,35 (10) :2267-2278.
  • 8YANG M S. On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57(3 ) :365-375.
  • 9LIN J S. Fuzzy clustering using a compensated fuzzy hopfield network [ J]. Neural Processing Letters, t999,10( I ) :35-48.
  • 10LI R P,MUKAIDON M. A maximum entropy approach to fuzzy clus- tering[ C ]//Proc of the 4th IEEE International Conference on Fuzzy System. 1995:2227-2232.

共引文献480

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部