期刊文献+

基于读者信息挖掘的图书馆资源推荐自动模型研究 被引量:1

Automatic Recommendation Model of Library Resource Based on Readers' Information Mining
下载PDF
导出
摘要 [目的/意义]提出基于读者信息挖掘的图书馆资源自动推荐模型,解决读者需求挖掘中的信息来源单一、挖掘深度不足等问题,推动图书馆信息处理领域的研究深入开展。[方法/过程]基于网络爬虫技术和读者需求的分散现状,设计了新型的馆藏资源自动推荐模型,给出了该模型的组成结构、功能模块以及处理流程,并用网络爬虫技术解决了读者信息的自动采集与挖掘问题。[结果/结论]实验证明,该模型具有较高的读者需求覆盖度、精确度,有一定的实用价值。 [Purpose/significance]The paper is to put forwards an automatic recommendation model of library resource based on readers’information mining to solve the problems of single information source and insufficient mining depth,and promote the development of information processing research in library.[Method/process]The paper designs a novel automatic recommendation model of library resources based on the status quo of web crawler technology and decentralized readers’demands,shows the composition and structure,functional modules and processing flow,and uses web crawler technology to settle the problems of automatic collection and mining.[Result/conclusion]Experiment results show that the model has high readers’demand coverage,accuracy and practical value.
作者 林淑贞 Lin Shuzhen(Guangzhou Library,Guangzhou Guangdong 510623)
机构地区 广州图书馆
出处 《情报探索》 2018年第4期6-10,共5页 Information Research
基金 广州市移动互联网服务创新项目"公共图书馆移动阅读推荐系统研究与设计"(项目编号:2017GL653)研究成果
关键词 图书馆服务 信息处理 读者需求 信息挖掘 网络爬虫 library service information processing reader’s demand information mining web crawler
  • 相关文献

参考文献14

二级参考文献129

共引文献142

同被引文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部