期刊文献+

聚3-羟基丁酸酯降解技术研究进展 被引量:5

A review for poly(3-hydroxybutyrate) degradation technologys
下载PDF
导出
摘要 综述了目前聚3-羟基丁酸酯(poly-3-hydroxybutyrate,PHB)的几种主要降解技术,包括热裂解、水解、溶剂降解和酶解等。重点介绍了各种降解技术的产物分布和反应机理,并对影响PHB热稳定性的主要因素进行了总结和讨论。各种技术的所需反应温度总体趋势为:热裂解>水解≥溶剂降解>酶解。PHB热解工艺简单,通常情况下PHB主要降解为巴豆酸和其低聚物,过高反应温度(>500℃)则使PHB分解为二氧化碳和丙烯。水解和溶剂降解都是以针对性地断开PHB酯键为出发点,以获得高产率的PHB单体(3-羟基丁酸、巴豆酸)或其酯类化合物(如巴豆酸甲酯)。与热解、水解和溶剂降解技术相比,酶解法限制因素较多且工艺成本高,需要新的技术突破。提出了两个需进一步重点研究的方向:(1)PHB催化热解脱羧制备高品位液体燃料;(2)直接转化富含PHB的微生物为高价值化学品。 This paper reviewed the main technologies for PHB depolymerization,including pyrolysis,hydrolysis,solvent treatment,and enzymolysis.The effect of process parameters,product distribution,and reaction mechanism on PHB depolymerization were discussed.The main factors affecting the PHB thermal stability were summarized.The required temperatures for a routine reaction are in the following order of:pyrolysis>hydrolysis≥solvent treatment>enzymolysis.Crotonic acid and its oligomers are usually the main products of pyrolysis at mild temperatures.However,a high pyrolysis temperature(e.g.,>500℃)would lead to a high yield of CO2 and propylene.Both hydrolysis and solvent treatment are mainly used to obtain targeted chemicals(e.g.,3-hydroxybutyric acid,crotonic acid,methyl crotonate),by selectively opening the ester bond in PHB.Compared with the other three technologies,new technical breakthrough is needed for enzymolysis due to its multiple limitations and high cost.Two potential research areas were proposed for further work:①catalyzed reforming of PHB for high-quality oil production,and②direct conversion of PHB rich-in microbial biomass for valuable chemicals.
作者 陈辉淦 郑育英 康世民 方岩雄 徐勇军 CHEN Huigan;ZHENG Yuying;KANG Shimin;FANG Yanxiong;XU Yongjun(College of Light Industry and Chemical Engineering,Guangdong University of Technology,Guangzhou 510006,Guangdong,China;School of Chemical Engineering and Energy Technology,Dongguan University of Technology,Dongguan 523808,Guangdong,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2018年第4期1381-1391,共11页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21606045) 广东省自然科学基金(2017A03031084)项目
关键词 聚合物加工 聚3-羟基丁酸酯 降解 热解 水解 催化 polymer processing poly(3-hydroxybutyrate) degradation pyrolysis hydrolysis catalysis
  • 相关文献

参考文献2

二级参考文献54

  • 1庞利沙,田宜水,侯书林,赵立欣,孟海波.生物质颗粒成型设备发展现状与展望[J].农机化研究,2012,34(9):237-241. 被引量:22
  • 2钱湘群,陈腾蛟,盛奎川,沈莹莹.玉米/木薯淀粉基竹炭成型燃料的品质特性[J].农业工程学报,2011,27(S1):157-161. 被引量:15
  • 3马孝琴,骆仲泱,方梦祥,余春江,岑可法.添加剂对秸秆燃烧过程中碱金属行为的影响[J].浙江大学学报(工学版),2006,40(4):599-604. 被引量:40
  • 4Worrell E, Phylipsen D, Einstein D, Martin N. Energy use and energy intensity of the U.S. chemical industry [R]. LBNL-44314, eScholarship University of California, 2000. http://escholarship.org/uc/item/2925w8g6.
  • 5Philp J C, Ritchie R J, Allan J E M. Biobased chemicals: the convergence of green chemistry with industrial biotechnology [J]. Trends in Biotechnology, 2013, 31: 219-222.
  • 6Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization [J]. Proceedings of National Academy Science, 2006, 103: 15729-15735.
  • 7Barber J. Photosynthetic energy conversion: natural and artificial [J]. Chemical Society Review, 2009, 38: 185-196.
  • 8Yang S T, El-Enshasy H A, Thongchul N. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers[M]. New Jersey: AIChE Wiley, 2013: 1-18.
  • 9Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? [J]. Current Opinion in Biotechnology, 2008, 19: 153-159.
  • 10Wijffels R H, Barbosa M J. An outlook on microalgal biofuels [J]. Science, 2010, 329: 796-799.

共引文献15

同被引文献32

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部