摘要
负载固相的催化剂因其简便的分离循环操作以及可观的催化性能而广受关注,但存在反应活性较差、金属流失量较大、催化剂制备成本较高等问题。本文首先从不同负载材料的角度综述了近年来该类催化剂最新的研究进展,主要探讨了载体的表面性质、催化剂的制备方法、膦配体等对催化性能的影响;最后介绍了新型的单原子催化剂所取得的突破性进展。分析表明:具有"类均相"特点的多孔有机聚合物的催化活性很好,而超支化聚合物功能化的磁性纳米催化剂的稳定性更佳。另外还对负载型铑催化剂未来的研究方向进行了展望:需要进一步加深对多孔有机聚合物的化学结构的理解,以便对其更好地表征;借助一些先进的表征技术如高角环状暗场扫描透射电镜和密度泛函理论的计算来深入研究载体结构对单原子催化剂的催化性能的影响。
Due to its simple separation,easy recycling and excellent catalytic performance,the immobilized Rh-based catalyst on solid supports attracts much attention.However,there are some problems such as poor reactivity,large amount of metal loss and high cost on catalyst preparation.In this paper,the recent progress of these catalysts in recent years is summarized from the perspective of different supported materials.The effects of the surface properties of the supported catalysts,their preparation methods and the phosphine ligands on the catalytic performance are discussed.Finally,the breakthroughs in the new single-atom catalysts are introduced.The results show that the catalytic activity of porous organic polymers is very good,while the stability of hyperbranched polymer functionalized magnetic nano-catalysts is better.Future research should be committed to understanding the chemical structure of porous organic polymers in order to better characterize them,and the effect of the carrier structure on the catalytic performance of single-atom catalysts with the assistance of some advanced characterization techniques such as high-angle annular dark field scanning transmission electron microscopy and density functional theory calculations.
作者
高李杰
孟凯
姜伟丽
周广林
周红军
余长春
GAO Lijie;MENG Kai;JIANG Weili;ZHOU Guanglin;ZHOU Hongjun;YU Changchun(Institute of New Energy,Beijing Key Laboratory of Biogas Upgrading Utilization,China University of Petroleum,Beijing 102249,China;Shandong Fiber Inspection Bureau,Jinan 250021,Shandong,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2018年第4期1433-1441,共9页
Chemical Industry and Engineering Progress
关键词
催化剂载体
氢甲酰化反应
多相反应
烯烃
纳米粒子
catalyst support
hydroformylation reaction
multiphase reaction
olefin
nanoparticle