期刊文献+

基于支持向量数据描述和不确定性推理的单类隐写分析算法 被引量:2

One-class Steganalysis Method Based on Support Vector Data Description and Uncertainty Reasoning
下载PDF
导出
摘要 单类隐写分析较传统的二类隐写分析有更好的"盲"检测特性和更强的通用性。针对单类隐写分析可靠性较低的问题,将不确定性推理理论应用于隐写分析中降低不确定性因素对单类隐写分析可靠性的影响,提出了一种基于支持数据描述和不确定性推理的单类通用隐写分析算法。实验表明,算法具有较好的可靠性、鲁棒性、通用性。 The one-class universal steganaylsis algorithm has better performance in terms of blind detection and universality than two-class algorithm.This method has poor accuracy of detection,however,it is necessary to improve the accuracy of one-class steganaylsis algorithm from feature extracting,classifying and detecting.Therefore,the algorithm based on support vector data description and uncertainty reasoning is put forward.In this algorithm,due to support vector description has better generalization capability,it is used as classifier and the probability expression is designed.Moreover,the uncertainty reasoning theory and method are applied to reduce the negative effect of some uncertainty factors in the algorithm.The experimental results show that the algorithm has good reliability,robustness and universality.
作者 李忱 赵林 LI Chen;ZHAO Lin(School of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China)
出处 《科学技术与工程》 北大核心 2018年第10期83-89,共7页 Science Technology and Engineering
关键词 隐写分析 不确定性 D-S证据理论 支持向量数据描述 stegananlysis uncertainty D-S evidence theory support vector data description
  • 相关文献

参考文献4

二级参考文献46

  • 1黄方军,黄继武.基于图像校准的通用型JPEG隐写分析[J].中国科学(F辑:信息科学),2009,39(4):383-390. 被引量:11
  • 2何军辉,黄继武.彩色JPEG图像的隐写分析[J].电子学报,2005,33(B12):2543-2548. 被引量:4
  • 3AVCIBAS I, MEMON N, SANKAR B. Steganalysis based on image quality metrics[A]. Proceedings of the 4th IEEE Workshop on Multimedia Signal Processing[C]. Canners, France, 2001. 517-522.
  • 4LYU S, FAR1D H. Detecting hidden messages using higher-order statistics and support vector machines[A]. Proceedings of the 5th International Workshop on Information Hiding[C]. Noordwijkerhout, the Netherlands, 2002. 340-354.
  • 5XUAN G R, SHI Y Q, GAO J J. Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions[A]. Proceedings of the 7th International Workshop on Information Hiding[C]. Barcelona, Spain, 2005. 262-277.
  • 6GOLJAN M, FRIDRICH J, HOLOTYAK T. New blind steganalysis and its implications[A]. Proceedings of SPIE, Security, Steganography, and Watermarking of Multimedia[C]. San Jose, CA, 2006. 1-13.
  • 7WANG Y, MOULIN P. Optimized feature extraction for learning-based image steganalysis[J]. IEEE Transaction on Information Forensics and Security. 2007, 2(1): 31-45.
  • 8Pevny T, Fridrich J. Towards multi-class blind steganalyzer for JPEG images[A]. Proceedings of International Workshop on Digital Watermarking[C]. Siena, Italy, 2005.39-53.
  • 9Lyu S, Farid H. Steganalysis using color wavelet statistics and one-class vector support machines[A]. Proceedings of SPIE[C]. 2004: 35-Lt5
  • 10MILLER D J, UYAR H S. A mixture of experts classifier with learning based on both labelled and unlabelled data[A]. Neural Information Processing Systems Foundation[C]. Cambridge, Massachusetts, USA. 1997. 571-577.

共引文献18

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部