期刊文献+

复杂环境中一种基于深度学习的异常检测方法 被引量:7

Anomaly Detection Based on Deep Learning in Complicated Circumstances
下载PDF
导出
摘要 为了解决复杂环境中异常检测的问题,提出一种基于深度学习的检测方法。首先,通过引入(you only look once,YOLO)检测,将卷积神经网络回归法提取的物体时空特征,输入到长短期记忆模型(LSTM),追踪复杂环境中个体的运动轨迹。然后,评估相邻个体间运动轨迹的依赖性。最后,采用编码-解码框架训练LSTM模型,预测物体未来的运动轨迹;根据物体未来运动轨迹的异常概率,最终完成异常检测。实验结果表明,解决了复杂环境中运动物体间的相互干扰问题;在时间和空间鲁棒性评估上,优于其他轨迹追踪的方法,从而证明了本方法的有效性和可行性。 To solve the problem of anomaly detection in complicated circumstances,a method based on deep learning has been proposed.First of all,you only look once(YOLO)detection is chose as a regression problem,spatio-temporal features of each object extracted by convolutional neural network(CNN)are fed into long short term memory(LSTM)model,which used to track each individual.Secondly,motion relation of coherent is evaluated between individuals.Finally,LSTM encoder-decoder is adopted to predict the future tracklet of each object,anomaly detection will be done by the abnormal probability of future tracklet.Experiments showed that the interference problem that exists among motional objects is solved by proposed method in complicated circumstances.It is better than other trajectory tracking techniques whatever on temporal or spatial robustness.The proposed method is demonstrated effectively and feasibly.
作者 邱鹏 邓秀慧 霍瑛 QIU Peng;DENG Xiu-hui;HUO Ying(School of Computer Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《科学技术与工程》 北大核心 2018年第10期231-234,共4页 Science Technology and Engineering
基金 南京工程学院校级科研青年基金(QKJA201603) 南京工程学院引进人才科研启动基金(YKJ201614)资助
关键词 深度学习 卷积神经网络 循环神经网络 长短期记忆模型 编码-解码框架 deep learning convolutional neural network recurrent neural network long short term memory encoder-decoder
  • 相关文献

参考文献1

二级参考文献17

  • 1Mahadevan V, Li W, Bhalodia V, et aL Anomaly detection in crowded scenes. Computer Vision and Pattern Recognition (CVPR), IEEE, 2010:1975-1981.
  • 2Saligrama V, Chen Z. Video anomaly detection based on local statis- tical aggregates. Computer Vision and Pattern Recognition (CVPR), IEEE, 2012:2112-2119.
  • 3Aggarwal J K, Ryoo M S. Human activity analysis: a review. ACM Computing Surveys (CSUR), 2011 ; 43(3) : 16.
  • 4Ikizler-Cinbis N, Sclaroff S. Object, scene and actions : Combining multiple features for human action recognition. ECCV 2010, Springer Berlin Heidelberg, 2010:494-507.
  • 5Wipke K B, Cuddy M R, Butch S D. ADVISOR 2. 1 : a user-friendly advanced powertrain simulation using a combined backward/forward approach. Vehicular Technology, IEEE Transactions ova, 1999; 48(6) : 1751-1761.
  • 6Leonelli P, Bonvieini S, Spadoni G. New detailed numerical pre - dures for calculating risk measures in hazardous materials transpoantion. Journal of Loss Prevention in the Process Industries, 1999;12 (6) : 507-515.
  • 7Fabiano B, Curro F, Palazzi E, et al. A framework for risk assess- ment and decision-making strategies in dangerous good transporta- tion. Journal of Hazardous Materials, 2002 ; 93 ( 1 ) : 1-15.
  • 8Feng S, Xu L D. Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets and Systems, 1999 ; 105 ( 1 ) : 1- 12.
  • 936kr. Deepg/int. 2014-6-15. http ://www. 36kr. net/gelingshentong.
  • 10Davies A C, Yin J H, Velastin S A. Crowd monitoring using image processing. Electronics & Communication Engineering Journal, 1995;7(1) : 37-47.

共引文献3

同被引文献46

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部