摘要
随着云计算的快速发展,大量应用开始向云上迁移,云平台资源分配受到关注。云服务负载是动态变化的,为保证服务质量不受负载量变化影响,最大化利用云资源,如何动态扩充、缩紧资源成为需要考虑的重要问题。设计并实现了一个Docker Swarm弹性云动态伸缩模块,通过增加和减少云服务副本数量改变服务资源的分配。弹性云的动态伸缩模块使用了响应式伸缩模型与预测式伸缩模型,其中预测式伸缩模型基于灰色预测模型。实验证明基于灰色预测的预测式伸缩模型具有较高的预测准确率。
With the development of cloud-computing,more and more application start to move on cloud,and the resource allocation of cloud platform has been much accounted.The workload of cloud-service is changing dynamically.It is the main concern of how to maximize cloud-resource and realize auto-scaling to ensure quality service.A Docker Swarm elastic-cloud platform has been designed and achieved,which uses replica to change resource allocation of platform.The auto-scaling model in elastic cloud uses both reactive scaling model and prediction scaling model to ensure auto-scaling.The prediction scaling model is based on Grey-forecasting model.The experiment proves the prediction scaling model which based on Grey-forecasting model has high prediction accuracy.
作者
王天泽
WANG Tian-ze(Computer Sience College,Xi’an Polytechnic University,Xi’an 710048,China)
出处
《软件导刊》
2018年第4期131-134,共4页
Software Guide
关键词
云平台
动态伸缩
弹性云
灰色预测
cloud platform
auto-scaling
elastic cloud
grey-forecasting