期刊文献+

具有竞争种群的Lotka-Volterra微分代数模型的复杂性分析 被引量:1

Complexity Analysis of Lotka-Volterra Differential Algebraic Model with Competitive Population
下载PDF
导出
摘要 研究了Lotka-Volterra食饵-捕食生物模型,考虑当捕食者数量过多时引入与捕食者形成一种简单竞争关系且不具有捕食食饵能力的物种来抑制捕食者的增长,根据守恒关系建立微分代数生物系统模型。然后,应用微分代数系统的稳定性分析方法和相关判据,讨论参数在一定范围内变化时生物模型稳定性问题。最后,结合分析结果应用Matlab软件对模型进行数值仿真。仿真结果表明,系统在参数取某一定值时出现极限环,所建立的微分代数生物系统模型产生复杂的非线性动力学现象。 The Lotka-Volterra predator-prey biological model is mainly studied in this paper by introducing the new population which has no ability to prey the other population to form a simple competition between predator and prey when the number of predators is excessive.Based on above condition,differential algebraic biological model is established according to the conservation.Then,the stability of biological model is discussed when the parameters change in a certain range by applying the stability analysis method and the related criteria of differential algebraic system.Finally,the model is the simulated numerically by considering the results of the analysis and using the Matlab software,and the simulation results show that the system has a limit cycle when the parameters vary a certain value,which proved that the complex nonlinear phenomena exist in the differential algebraic biological model.
作者 牛宏 王一丹 王贺 Niu Hong;Wang Yidan;Wang He(School of Science,Liaoning Shihua University,Fushun Liaoning 113001,China;College of Chemistry,Chemical Engineering and Environmental Engineering,Liaoning Shihua University,Fushun Liaoning 113001,China)
出处 《辽宁石油化工大学学报》 CAS 2018年第2期90-93,共4页 Journal of Liaoning Petrochemical University
基金 国家自然科学基金青年科学基金项目(61603168)
关键词 微分代数模型 极限环 稳定性 Lotka-Volterra食饵-捕食系统 Differential algebraic model Limit cycle Stability Lotka-Volterra predator-prey system
  • 相关文献

参考文献3

二级参考文献19

  • 1刘保政,刘德宝,高立群.供不应求季节性商品的价格控制和生产销售决策模型[J].东北大学学报(自然科学版),2005,26(11):1040-1043. 被引量:4
  • 2钱俊磊,马晓峰,杨志刚.混沌系统基于T-S模糊模型的控制方法[J].系统仿真学报,2005,17(12):2987-2990. 被引量:5
  • 3Hanson F B,Ryan D.Optimal harvesting with both population and price dynamics[J].Mathematical Biosciences,1998,148:129-146.
  • 4Armstrong C W,Skonhoft A.Marine reserves:a bio-economic model with asymmetric density dependent migration[J].Ecological Economics,2006,57:466-476.
  • 5Murry J D.Mathematical biology[M].2nd ed.Beijing:Beijing Book Publishing House,1998:25-45.
  • 6Sunita G,Ra'id K N.Chaos in seasonally perturbed ratio-dependent prey-predator system[J].Chaos,Solitons and Fractals,2003,15(1):107-118.
  • 7Clark C W.Mathematical bioeconomics:the optimal management of renewable resources[M].New York:Wiley,1990:10-69.
  • 8Parker T S,Chua L O.Practical numerical algorithms for chaotic systems[M].New York:Springer,1989:66-71.
  • 9Isidori A.Nonlinear control systems[M].3rd ed.New York:Springer,1995:137-218.
  • 10Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Physical Review Letters,1990,64(11):1196-1199.

共引文献27

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部