期刊文献+

基于双层结构的加速K-NN分类方法 被引量:3

Speeding K-NN classification method based on double-layer structure
下载PDF
导出
摘要 在传统K-NN分类中,对于每个待测样本均需计算并寻找k个决策近邻,分类效率较低。针对该问题,提出一种双层结构的加速K-NN分类(K-NN classification based on double-layer structure,KNN_DL)方法。将正类和负类样本分别划分为多个不同子集,计算每个子集的中心和半径。当新样本进入时,选择k个决策近邻子集,若其具有相同的类别标签,将该样本标记为相应类别;反之,选择决策近邻子集中最近的k个决策近邻。这种双层结构的加速方式,压缩待测样本的决策近邻规模,提高效率。实验结果表明,KNN_DL方法能够获得较高的样本预测速度和较好的预测准确率。 For each sample to be tested of traditional K-NN classification,it is necessary to compute and select the k decision nearest neighbors,and the classification efficiency is low.To solve this problem,a speeding K-nearest neighbor(KNN)classification method based on double-layer structure(KNN_DL)was presented.The positive and negative samples were divided into a number of different subsets respectively,and the center and radius of all these subsets were computed.When a new sample was entered,the nearest k decision nearest neighbor subset was selected.If they had the same category label,the sample to be labeled was marked as the corresponding label.On the other hand,the k decision nearest neighbor of decision neighbor subset was selected.This double-layer speeding method compresses the size of the decision nearest neighbor set,and the learning efficiency is improved.Experimental results demonstrate that the KNN_DL model can obtain the high learning efficiency and testing accuracy simultaneously.
作者 王晓 赵丽 WANG Xiao;ZHAO Li(School of Information Technology and Engineering,Jinzhong University,Jinzhong 030619,China)
出处 《计算机工程与设计》 北大核心 2018年第4期1071-1077,共7页 Computer Engineering and Design
关键词 K-NN分类 决策近邻子集 决策近邻样本 中心 半径 KNN_DL方法 K-NN classification decision nearest neighbor subset decision nearest neighbor sample center radius KNN_DL algorithm
  • 相关文献

参考文献4

二级参考文献94

  • 1Big data. Nature, 2008, 455(7209): 1-136.
  • 2Dealing with data. Science,2011,331(6018): 639-806.
  • 3Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 4Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 5Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 6Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 7Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 8Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 9Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.
  • 10Sun Yizhou,Norick Brandon, Han Jiawei, Yan Xifeng, YuPhilip S,Yu Xiao. Integrating meta-path selection with user-guided object clustering in heterogeneous information net-works/ /Proceedings of the 18th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining.Beijing, China, 2012: 1348-1356.

共引文献847

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部