期刊文献+

优化经验模态模型下的弱信号重构方法

Weak signal recovery method based on optimization EMD
下载PDF
导出
摘要 为快速恢复强噪声掩盖下的弱信号,提出一种基于ACEEMD(adaptive complete ensemble empirical mode decomposition)模型的弱信号快速重构方法。结合优化的互补集合经验模态分解与GPU并行运算,快速将弱信号从强噪声背景下重构出来,使其更容易被检测。运用该方法对模拟弱信号数据与实际弱信号数据进行处理,实验结果表明,处理后的测试数据信噪比提高了2db-3db,处理速度提高了4-5倍,处理效果明显。 To recover the weak signal with strong noise,a weak signal recovery method based on ACEEMD was proposed.The method combined the optimization of CEEMD and GPU parallel operation,and quickly recovered the weak signal from strong noise,making it easier be processed and identified.This method was used to process the simulated weak signal data and the real weak signal data.Experimental results show that the signal to noise ratio is increased by 2 dB to 3 dB,and the processing speed is increased by 4-5 times and the processing effect is obvious.
作者 文畅 廖虎 谢凯 贺建飚 WEN Chang;LIAO Hu;XIE Kai;HE Jian-biao(School of Computer Science,Yangtze University,Jingzhou 434023,China;School of Electronic Information,Yangtze University,Jingzhou 434023,China;School of Information Science and Engineering,Central South University,Changsha 410083,China)
出处 《计算机工程与设计》 北大核心 2018年第4期1111-1115,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61272147) 湖北省教育厅科学技术研究基金项目(B2015446)
关键词 弱信号 强噪声背景 互补集合经验模态分解 图形处理器 并行计算 weak signal strong noise background complete ensemble empirical mode decomposition graphical processing unit parallel computing
  • 相关文献

参考文献2

二级参考文献18

  • 1张恒磊,张云翠,宋双,刘天佑.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探,2008,43(5):508-513. 被引量:33
  • 2张军华.地震资料去噪方法——原理、算法、编程及应用[M].东营:中国石油大学出版社,2011:1-355.
  • 3Shan H,Ma J W, Yang H Z. Comparisons of wave-lets, contourlets and curvelets in seismic denoising[J]. Journal of Applied Geophysics, 2009, 69 (2) .. 103-115.
  • 4Cands E J, Donoho D L. Curvelets.. a surprisingly effective nonadaptive representation for objects with edges[,M]. Nashville: Vanderbilt University Press, 1999 : 1-16.
  • 5Cands E J, Donoho D L. New tight frames of curev- elets and optimal representations of objects with smooth singularities[R]. USA: Department of Sta- tistics, Stanford University, 2002.
  • 6Herrmann F J, Verschuur E. Curvelet-domain multi- ple elimination with sparseness constraints[J]. Ex- panded Abstracts of 74 Annual Internat SEG Mtg, 2004,1333-1336.
  • 7Herrmann F J,Wang D, Hennenfent G, et al. Curve- let-based seismic data processing: a multiscale and nonlinear approach[J]. Geophysics, 2007,73 (1) : A1- A5.
  • 8Cand6s E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling Sim- ulation, 2006,5 (3) .. 861-899.
  • 9Ying L, Demanet L, Cand6s E. 3D discrete curvelet transform[J]. International Society for Optics and Photonics (Optics g Photonics 2005 ), 2005, SPIES91413.
  • 10Dubois S, P6teri R, M6nard M. A 3D discrete curve- let based method for segmenting dynamic textures [C] // Institute of Electrical and Electronics Engi- neers. Image Processing(ICIP), 2009 16th IEEE In- ternational Conference on. USA: Institute of Electri-cal_and El ec!rQnic Engineer s,?O.?9 : 13_73-1376 .

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部