期刊文献+

基于迭代投影向量学习的行人重识别 被引量:1

Person re-identification based on iterative projection vectors learning
下载PDF
导出
摘要 为降低行人重识别问题中投影矩阵学习的时间复杂度和过拟合风险,提出一种带有正则化因子的迭代投影向量学习的算法。利用行人图像特征空间分布的迭代更新策略,结合随机梯度下降方法,对更新后的特征进行学习,得到若干列满足目标精度的相互正交的投影向量;将这些投影向量相乘得到最终的投影矩阵,有效降低运算复杂度。将该算法与其它常用的方法在现有公共数据集上进行比较,比较结果表明,该算法的识别效率明显高于其它方法,训练时间少于其它常用方法。 To release the risk of overfitting and time complexity of projection matrix learning in person re-identification,an algorithm based on stochastic gradient descent iterative projection vectors learning was proposed.The iterative update strategy of person’s image feature space distribution was designed,and with the method of stochastic gradient descent,several orthogonal projection vectors were learnt,which met the objective accuracy.By multiplying these vectors to get final projection matrix,this method can effectively reduce the computational complexity.By comparing to the other common methods on the existing public datasets,experimental results show that the proposed method has higher recognition efficiency and shorter training time than other common methods.
作者 丁宗元 王洪元 DING Zong-yuan;WANG Hong-yuan(School of Information and Mathematics,Changzhou University,Changzhou 213164,China)
出处 《计算机工程与设计》 北大核心 2018年第4期1120-1124,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61572085)
关键词 行人重识别 投影向量 相似性度量学习 迭代更新 随机梯度下降 person re-identification projection vectors similarity metric learning iterative update stochastic gradient descent
  • 相关文献

参考文献3

二级参考文献70

  • 1Gray D, Brennan S, and Tao H. Evaluating appearance models for recognition, reacquisition, and tracking[C]. IEEE International Workshop on Performance Evaluation for Tracking and Surveillance. Rio de Janeiro, Brazil, 2007: 41-47.
  • 2Wang H, Bao X, Choudhury R R, et al. Insight: recognizing humans without face recognition[C]. Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Georgia, USA, 2013, 7.
  • 3Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2360-2367.
  • 4Cheng D S, Cristani M, Stoppa M, et al. Custom pictorial structures for re-identification[C]. British Machine Vision Conference, Dundee, UK, 2011, 6.
  • 5Bazzani L, Cristani M, Perina A, et al. Multiple-shot person re-identification by chromatic and epitomic analyses[J]. Pattern Recognition Letters, 2012, 33(7): 898-903.
  • 6Ma B, Su Y, and Jurie F. Local descriptors encoded by fisher vectors for person re-identification[C]. European Conference on Computer Vision, Florence, Italy, 2012: 413-422.
  • 7Hu Y, Liao S, Lei Z, et al. Exploring structural information and fusing multiple features for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 794-799.
  • 8Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, 2010: 435-440.
  • 9Bak S, Corvee E, Bremond F, et al. Multiple-shot human re-identification by mean riemannian covariance grid[C]. IEEE International Conference on Advanced Video and Signal-Based Surveillance, Klagenfurt, Austria, 2011: 179-184.
  • 10Zhao R, Ouyang W, and Wang X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 4321-4328.

共引文献52

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部