摘要
研究热传导方程带有周期条件的定解问题,根据分离变量法把PDE问题转化为积分方程问题,然后利用逐次逼近法和压缩映射原理证明积分方程问题解的存在唯一性,最后证明该积分方程的解就是原PDE问题的古典解.
In this paper,we study the definite solution problem of heat equation with periodic conditions.We firstly transform this partial differential equation into an integral equation with the method of separation of variables,then using the methods of successive approximation and contraction mapping principle to prove the existence and uniqueness of the solution of this integral equation problem,and finally we can prove that the solution of this integral equation problem is exactly the classical solution of the original partial differential equation problem.
作者
胡晶地
HU Jingdi(Information and Control Engineering School,Guangsha College of Applied Construction Technology,Dongyang 322100,China)
出处
《湖州师范学院学报》
2018年第2期12-15,共4页
Journal of Huzhou University
关键词
偏微分方程
定解问题
逐次逼近法
压缩映射原理
古典解
partial differential equation
definite solution problem
successive approximation method
contraction mapping principle
classical solution