期刊文献+

一种针对特定目标的提议算法

Improved Edge Boxes Proposal Used in Specific Instance
下载PDF
导出
摘要 Edge boxes是一种一般目标提议算法,为了提高其对特定目标提议的有效性,提出了一种改进的Edge boxes提议算法。Edge boxes算法通过对候选框评分得到候选区域,针对特定目标,改进了评分的依据。首先,提取目标的不同区域,得到被候选框完全封闭包围的轮廓在这些区域中的像素点,由各个区域的像素点的均值幅值构成特征向量;其次,计算各个候选框与目标的特征向量的差值,并将差值与被候选框完全封闭包围的轮廓的数量结合起来,作为评价各个候选框包含目标可能性大小的依据。所提算法在视频序列上进行了实验,精度至少提升了10.71%,验证了改进算法的有效性。 Since edge boxes cannot accurate in detecting specific instance,an improved detection algorithm is proposed.Edge boxes evaluate boxes by calculate the amount of the completely closed contours in the boxes,as for specific instance,we make some improvement in the process of scoring.Firstly,we extracted the different regions of the target,obtained the completely closed contours in the boxes and the pixels that compose these contours.Based on what we extracted and what we obtained,a feature vector composed by the mean magnitude of these pixels we obtained in the different regions is proposed.Then,we need to calculate the differences between a candidate and the target in the feature vector.Finally,combining the differences and the amount of the completely closed contours in the boxes,the probability of the target in the boxes is known.The proposed algorithm is tested on the video sequence.Experimental results show that has a significantly improvement of 10.71%in representative recall rate.The improved algorithm is effective for improving detecting performance.
作者 郑琛媛 程远增 付强 ZHENG Chen-yuan;CHENG Yuan-zeng;FU Qiang(Shijiazhuang Compus of the Army Engineering University,Shijiazhuang 050003,China)
出处 《火力与指挥控制》 CSCD 北大核心 2018年第3期73-76,81,共5页 Fire Control & Command Control
关键词 目标检测 EDGE BOXES 特征向量 特定目标 object detection Edge boxes feature vector specific instance
  • 相关文献

参考文献4

二级参考文献95

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:19
  • 3任臣,张覃平.基于Kalman滤波理论的运动目标检测新方法[J].光电工程,2007,34(4):7-11. 被引量:15
  • 4Gao Hongzhi,Green R. A Robust Moving Object Segmentation Algorithm [A]. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition [C]. Christchurch,2007(1) :214 - 217.
  • 5Kinoshita K, Enokidani M, Izumida M, et al. Tracking of a Moving Object Using One -Dimensional Optical Flow with a Rotating Observer[A]. 9th International Conference on Control, Automation, Robotics and Vision[C]. Singapore, 2006 : 1-6.
  • 6Piccardi M. Background Subtraction Techniques: A Review [A]. IEEE International Conference on Systems, Man and Cybernetics[C]. 2004(4):3 099 - 3 104.
  • 7Chris Stauffer,Grimson W E L. Adaptive Background Mixture Models for Real - time Tracking[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Fort Collins : IEEE Press, 1999: 246 - 252.
  • 8Cucch Iara R,Grana C,Piccard IM,et al. Improving Shadow Suppression in Moving Object Detection with HSV Color Information [A]. Proceedings of IEEE Intelligent Transportation Systems Conference [C]. Oakland: IEEE Press, 2001: 334 - 339.
  • 9Surendra Gupte, Osama Masoud, Robert F K Martin, et al. Detection and Classification of Vehicles[J]. IEEE Trans. on Intelligent Transportation Systems, 2003,3 ( 1 ) : 37 - 47.
  • 10Pontil M,Verri A. Support vector machines for 3-d object recognition[J].Pattern Analysis Machine Intelligence,1998,(06):637-646.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部