摘要
拟在n(n≥3)维空间中研究带有次临界指数的非线性项与位势项的半线性波动方程。通过采用试探函数方法,证明了小初值Cauchy问题的解总会在有限时间内破裂,并得到带位势项的半线性波动方程在次临界情形时解的破裂性态,从而建立问题解的生命跨度的上界估计。
This paper is concered with the semilinear wave equation with the critical exopontional nonlinear term and potential items in the dimension n(n≥3).By constructing a test function,the blowup behavior of solutions to the Cauchy problem with small initial data is established.We prove that solutions always blow-up in finite time.The blow-up criterion of solutions to the problem in the subcritical case with a potential is obtained.We investigate the upper bound life span of solutions to the problem.
作者
韩伟
任登云
HAN Wei;REN Deng-yun(School of Mathmatics,North University of China,Taiyuan 030051,China)
出处
《火力与指挥控制》
CSCD
北大核心
2018年第3期116-119,共4页
Fire Control & Command Control
基金
国家自然科学基金(11301489
11571324)
山西省青年科学基金(2015021001)
中北大学杰出青年基金(JQ201604)
中北大学青年学术带头人支持计划资助项目
关键词
半线性波动方程
位势
次临界
破裂
生命跨度
semilinear wave equation
potential
subcritical
blow up
lifespan