期刊文献+

带位势项的半线性波动方程解的生命跨度的上界估计

Upper Bound Estimate of Lifespan of Solutions for Cauchy Problem for Semilinear Wave Equations with Potential
下载PDF
导出
摘要 拟在n(n≥3)维空间中研究带有次临界指数的非线性项与位势项的半线性波动方程。通过采用试探函数方法,证明了小初值Cauchy问题的解总会在有限时间内破裂,并得到带位势项的半线性波动方程在次临界情形时解的破裂性态,从而建立问题解的生命跨度的上界估计。 This paper is concered with the semilinear wave equation with the critical exopontional nonlinear term and potential items in the dimension n(n≥3).By constructing a test function,the blowup behavior of solutions to the Cauchy problem with small initial data is established.We prove that solutions always blow-up in finite time.The blow-up criterion of solutions to the problem in the subcritical case with a potential is obtained.We investigate the upper bound life span of solutions to the problem.
作者 韩伟 任登云 HAN Wei;REN Deng-yun(School of Mathmatics,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《火力与指挥控制》 CSCD 北大核心 2018年第3期116-119,共4页 Fire Control & Command Control
基金 国家自然科学基金(11301489 11571324) 山西省青年科学基金(2015021001) 中北大学杰出青年基金(JQ201604) 中北大学青年学术带头人支持计划资助项目
关键词 半线性波动方程 位势 次临界 破裂 生命跨度 semilinear wave equation potential subcritical blow up lifespan
  • 相关文献

参考文献2

二级参考文献19

  • 1Georgiev,V.,Lindblad,H.and Sogge,C.D.,Weighted Stricharz estimates and global existence for semilinear wave equations,Amer.J.Math.,119,1997,1291-1319.
  • 2Glassey,R.T.,Finite-time blow-up for solutions of nonlinear wave equations,Math.Z.,177,1981,323-340.
  • 3Glassey,R.T.,Existence in the large for □u = F(u) in two space dimensions,Math.Z.,178,1981,233-261.
  • 4John,F.,Blow up of solutions of nonlinear wave equations in three space dimensions,Manuscripta Math.,28,1979,235-268.
  • 5Schaeffer,J.,The equation □u = |u|^p for the critical value of p,Proc.Royal Soc.Edinburgh,101,1985,31-34.
  • 6Sideris,T.C.,Nonexistence of global solutions to semilinear wave equations in high dimensions,J.Differential Equations,52,1984,378-406.
  • 7Strauss,W.A.,Nonlinear scattering theory at low energy,J.Funct.Anal.,41,1981,110-133.
  • 8Takamura,H.,An elementary proof of the exponential blow-up for semilinear wave equations,Math.Meth.Appl.Sci,17,1994,239-249.
  • 9Tataru,D.,Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equations,Trans.Amer.Math.Soc.,353,2001,795-807.
  • 10Yordanov,B.T.and Zhang,Q.S.,Finite time blow up for critical wave equations in high dimensions,Journal of Funct.Anal.,231,2006,367-374.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部