期刊文献+

支持向量回归在圆形检测中的应用

Application of support vector regression in circle detection
下载PDF
导出
摘要 对圆形的识别是机器视觉中最基本和最重要的任务之一,为了准确确定复杂背景图像中圆的位置,提出了一种将支持向量回归模型与三点拟合圆联合起来的新算法,通过支持向量回归模型训练不同类型的圆形样本,得到超平面方程f(x),以f(x)为中心线,构建一个宽度为2ε的近似圆环型间隔带,在此间隔带上的点都被认为属于圆形边界上的点,然后运用三点拟合圆几何算法计算出圆心和半径,从而达到识别圆形的目的。实验结果表明,联合算法通过对训练样本的学习,能够在噪声比较大的背景图像中得到圆形的边界信息,从而确定圆的位置,较仅使用某一种圆形识别算法有一定的优势。在以圆形作为定位的机器视觉领域,具有重要的理论研究价值与实践意义。 Circle detection is one of the most basic and important tasks in machine vision.In order to accurately determine the circle location in complex background images,a new joint algorithm that combines the model of support vector regression with the three-point fitting circle detection algorithm is proposed.The different types of circular samples are trained by the support vector regression model in the algorithm.So the hyperplane equation f(x)can be obtained.Taking the f(x)as the center line,one similar circular ring with the width of 2 can be constructed.The points in this interval are considered as the circular boundary points.Then,the center and radius can be calculated based on the three-point fitting circular geometry algorithm,so as to achieve the purpose of identifying the circle.The experimental results show that the circular boundary information can be obtained from the relatively noisy background images by learning the training samples thereby determining the location of the circle,which has some advantages over using only a certain circular recognition algorithm.In the field of machine vision positioning with circles,this joint algorithm has important theoretical research value and practical significance.
作者 吴观茂 陈令刚 王倩倩 WU Guanmao;CHEN Linggang;WANG Qianqian(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001,China;School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan,Anhui 232001,China)
出处 《河北科技大学学报》 CAS 2018年第2期99-106,共8页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金(61471004) 安徽理工大学研究生创新基金项目(2017CX2045)
关键词 计算机图象处理 圆形检测 支持向量回归 三点拟合圆 机器视觉 computer image processing circle detection support vector regression three-point fitting circle machine vision
  • 相关文献

参考文献6

二级参考文献75

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2侯宇.圆和椭圆边缘检测的快速方法[J].中国计量学院学报,2000,11(2):140-144. 被引量:10
  • 3刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 4张芬,陶亮,孙艳.基于混合核函数的SVM及其应用[J].计算机技术与发展,2006,16(2):176-178. 被引量:23
  • 5[2]Taylor S,Cristianini N.Kernel methods for pattern analysis.England:Cambridge University Press,2004
  • 6[3]Wu S,Amari S.Conformal transformation of kernel functions:a data-dependent way to improve support vector machine classifiers.Neural Processing Letters(S1370-4621),2002;15:59-67
  • 7[4]Chapelle O,Vapnik V N,Bacsquest O,et al.Choosing multiple parameters for support vector machines.Machine Learning,2002;46:131-159
  • 8[5]Cristianini,N 2-Taylor Shawe J,Kandola J,et al.On kernel target alignment.In:Proc.Neural Information Processing Systems Cambridge,MA:MIT Press,2002:367-373
  • 9Frontzek T, Navin Lal T, Eekmiller R. Predicting the Nonlinear Dynamics of Biological Neurons Using Support Vector Machines with Different Kernels. In: Proc of the International Joint Conference on Neural Networks, Washington, D C, USA, 2001, 2:1492- 1497.
  • 10Vapnik V N. The Nature of Statistical Learning Theory. Springer,N Y, 1999.

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部