期刊文献+

改进的核极限学习机定位算法 被引量:1

Improved kernel extreme learning machine localization algorithm
下载PDF
导出
摘要 针对神经网络无线定位方法,存在训练耗时长,定位结果易受噪声干扰的问题,提出了一种改进的核极限学习机无线定位算法。采取在同一位置进行多次测量的方法得到训练数据;把同一位置测得的数据划分为一个样本子空间并提取样本子空间的特征,以样本子空间的特征代替原来的训练数据;利用矩阵近似及矩阵扩展的相关理论改进核极限学习机算法;将处理过的训练数据利用改进的核极限学习机进行训练,得到定位预测模型。仿真结果表明,在相同数据集下,改进的核极限学习机训练用时短、定位速度快;在相同噪声干扰情况下,此算法定位预测误差小。经验证,该算法不但能提高网络的训练速度、定位速度,还能有效地降低噪声的干扰,提高定位精度。 Aiming at the problems of neural networks wireless location,such as large training time consumption and positioning results easily interfered by noise,this paper presents an improved kernel extreme learning machine wireless positioning algorithm.Firstly,the training data is obtained by the method of multiple measurements at the same location.Then,the data obtained at the same position is divided into a sample subspace and the characteristics of the sample subspace are extracted to replace the original training data.At the same time,the kernel extreme learning machine algorithm is improved by using the matrix approximation and matrix extension theory.Finally,the processed training data is trained by the improved kernel extreme learning machine,and the positioning prediction model is obtained.The simulation results show that the improved kernel extreme learning machine has shorter training time and the positioning speed is faster under the same data set.In the case of the same noise interference,the algorithm makes less prediction errors.It has been proved that the algorithm can not only improve the training speed and positioning speed of the network,but also reduce the interference of noise and improve the positioning accuracy.
作者 杨晋生 郭雪亮 陈为刚 YANG Jinsheng;GUO Xueliang;CHEN Weigang(School of Microelectronics,Tianjin University,Tianjin 300072,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第2期249-256,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 天津市科技兴海项目(KJXH2011-2)~~
关键词 无线定位 核极限学习机 样本子空间 降维 wireless location kernel extreme learning machine sample subspace dimension reduction
  • 相关文献

参考文献4

二级参考文献32

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2孙红岩,毛士艺.多传感器目标识别的数据融合[J].电子学报,1995,23(10):188-193. 被引量:26
  • 3李瑛,胡志刚.一种基于BP神经网络的室内定位模型[J].计算技术与自动化,2007,26(2):77-80. 被引量:11
  • 4Reed J, Rappaport T. An overview of the challenges and progress in meeting the E-911 requirement for location service[J]. IEEE Communication Magazine, 1998, (4) : 30 - 37.
  • 5Foy W. Position-location solutions by Taylor series estimation [J].IEEE Journal of Aerospace and Electronic Systems, 1976,12 (2):187-194.
  • 6Fang B T. Simple solutions for hyperbolic and related fixes[J]. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26 (5): 748-753.
  • 7Schau H C . Passive source localization employing intersecting spherical surfaces from time of arrival difference[J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1987, 35 (8) :1223- 1225.
  • 8Chan Y T, Ho K C. A simple and efficient estimationor for hyperbolic location[J].IEEE Trans. on Signal Processing, 1994, 421(8): 1905-1915.
  • 9Greenstein L J. A new path-gain/delay spread propagation model for digital cellular channel[J]. IEEE Trans. on VT, 1997,46 (2) :177 - 484.
  • 10X R Li.Comparison of two measurement fusion methods for Kalman-Filter-Based multisensor data fusion[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):273-280.

共引文献92

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部