期刊文献+

基于EGSnrc仿真的二维电离室剂量探测器的室壁厚度确定方法 被引量:1

Method on Determination of Wall-thickness of Two-dimensional Ionization Chamber Dose Detector Based on EGSnrc
下载PDF
导出
摘要 室壁厚度是二维电离室剂量探测器的重要设计参数。在二维电离室剂量探测器的单元空腔几何参数确定的情况下,利用蒙特卡罗仿真方法建立了探测器室壁仿真计算的简化模型,并利用EGSnrc程序对模型进行了仿真计算,给出了室壁厚度的参考数值。结果表明,当空腔为直径4.5mm、高5mm的圆柱形时,在能量为1.25MeV射线下,为达到1%的测量精度,电离室前壁厚度需达到4.4mm,侧壁厚度需达到1.5mm;在1.25~4 MeV射线能量范围内使用时,为达到1%的测量精度,侧壁厚度需达到5mm。本文研究结果可作为该种探测器的设计依据。 The wall-thickness is an important design parameter for two-dimensional ionization chamber dose detector.Under the given geometric parameters of the cavity unit of two-dimensional ionization chamber dose detector,the simulation model was built by using Monte Carlo method.The wall-thickness was calculated with the simulation model using EGSnrc,and the reference numerical value was given.The result shows that when the cavity is a cylinder with diameter of 4.5 mm and height of 5 mm,under radiation of 1.25 MeV,the front wall-thickness of ionization chamber should be more than 4.4 mm and the side wall-thickness should be 1.5 mm in order to meet the demand of accuracy of 1%.Under the radiation with energy of 1.25-4 MeV,the side wall-thickness should be more than 5 mm in order to meet the demand of accuracy of 1%.The research result can be used as the design basis for the detector.
作者 邢桂来 谈春明 XING Guilai;TAN Chunming(Beijing Key Laboratory of Nuclear Detection&Measurement Technology,Beijing 100084,China;Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing 100084,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2018年第4期710-714,共5页 Atomic Energy Science and Technology
基金 清华大学自主科研计划资助项目(20151080374)
关键词 EGSNRC 二维电离室 剂量探测器 室壁厚度 EGSnrc two-dimensional ionization chamber dose detector wall-thickness
  • 相关文献

参考文献2

二级参考文献10

  • 1辐射剂量学:基本原理[M].施学勤,等译.北京:原子能出版社,1981.
  • 2ATTIX F H,ROCSCH W C.辐射剂量学:仪器[M].施学勤,等译.北京:原子能出版社,1981.
  • 3LOWD A, MORAN J M, DEMPSEY J F, et al. Dosemetry tools and techniques for IMRT [J]. Medical Physics, 2011, 38(3): 1 313- 1 338.
  • 4ALMOND P R, BIGGS P J, COURSEY B M, et al. AAPM's TG-51 protocol for clinical refer-ence dosemetry of high-energy photon and elec- tron beams[J].Medical Physics, 1999, 26 (9): 1 847-1 870.
  • 5HUQ M S, ANDREO P, SONG H. Comparison of the IAEA TRS-398 and AAPM TG-51 ab- sorbed dose to water protocols in the dosemetry of high-energy photon and electron beams[J]. Physics in Medicine and Biology, 2001, 46(11): 2 985-3 006.
  • 6ROGERS D W O, BIELAJEW A F, NAHUM A E. Ion chamber response and wall correction fac- tors in a 60Co beam by Monte Carlo simulation [J]. Physics in Medicine and Biology, 1985, 30 (5): 429 443.
  • 7ROGERS D W O, BIELAJEW A F. Wall atten- uation and scatter corrections for ion chambers: Measurements versus calculations[J]. Physics in Medicine and Biology, 1990, 35 (8): 1 065 1 078.
  • 8BUCKLEY L A, ROGERS D W. Wall correc- tion factors, Pwall, for parallel-plate ionization chambers[J]. Medical Physics, 2006, 33(6): 1 788 1 796.
  • 9WANG L L W, ROGERS D W O. Replacement correction factors for plane-parallel ion chambers in electron beams[J]. Medical Physics, 2010, 37 (2) : 461-465.
  • 10WANG L L, ROGERS D W. Replacement cor- rection factors for cylindrical ion chambers in electron beams[J]. Medical Physics, 2009, 36 (10): 4 600-4 608.

共引文献2

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部