期刊文献+

基于公交车GPS数据的短时交通流预测研究 被引量:3

Research on Short-term Traffic Flow Forecasting Based on GPS Data of Bus
下载PDF
导出
摘要 随着智慧化城市的提出,智能交通系统已经成为城市建设中至关重要的部分,而短时交通流预测是实现智能交通系统的核心研究内容之一[1]。本文对获取的公交车GPS数据进行了挖掘分析,提取公交车速度数据进行短时交通流预测算法研究。考虑到时序数据的时间相关性和交通流数据的准周期特性,本文设计长短期记忆人工神经网络(Long-Short Term Memory,LSTM)对交通流速度数据进行预测。结果表明,LSTM能够通过对历史速度数据的学习,找出时间序列之间的关系,利用LSTM的选择性记忆功能,能够对短时交通流速度进行更准确的预测。 With the introduction of the smart city,Intelligent transportation systems have become a crucial part of urban construction,and traffic flow prediction is a key issue in intelligent transportation system study.In this paper,we conducted data mining and analysis of bus GPS data,and take the bus speed data for short-term traffic flow prediction algorithm.Considering the temporal correlation of time series data and the quasi-periodic characteristics of traffic flow data,long Short-Term Memory neural network is designed to predict traffic flow velocity in this paper.The results show that LSTM neural network model can learn the past data very well,and identify the relationship between time series.Taking advantage of selective memory,LSTM can get a reliable prediction of Short-term traffic flow.
作者 张海鹏 杨宏业 邬鑫珏 王葆元 ZHANG Haipeng;YANG Hongye;WU Xinjue;WANG Baoyuan(School of Information Engineering,Inner Mongolia University of Technology,Hohhot 010080;Intelligent dispatching center,Bus General Company,Hohhot 010080;The accident department,The Inner Mongolia Autonomous Region public security hall,Hohhot 010080)
出处 《内蒙古工业大学学报(自然科学版)》 2018年第1期75-80,共6页 Journal of Inner Mongolia University of Technology:Natural Science Edition
关键词 短时交通流预测 公交GPS数据 长短期记忆网络 Short-term traffic flow forecasting GPS data of bus Long-Short Term Memory
  • 相关文献

参考文献2

二级参考文献5

  • 1蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 2BRAIN L SMITH, MICHAEL J, DEMETSKY. Traffic Flow Forecasting: Comparison of Modeling Approaches [ J ]. Journal of Transportation Engineering, 1997, 123 (4) :261-266.
  • 3SHERIF ISHAK, Haitham AI-Deek. Performance Evalu- ttion of Short-Tern1 Time-Series Traffic Prediction Model [ J ]. Journal of Transportation Engineering, 2002, 128 (6) :490-498.
  • 4YANG L C,JIA L,WANG H. Wavelet network with ge- netic algorithm and its applications for traffic flow forecas- ting[ C]Proceedings of the 5thWorld Congress on Intel- ligent Control and Automation, China: Hangzhou, 2004.
  • 5贺国光,李宇,马寿峰.基于数学模型的短时交通流预测方法探讨[J].系统工程理论与实践,2000,20(12):51-56. 被引量:131

共引文献11

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部