期刊文献+

超声速飞行器低声爆气动布局优化设计研究 被引量:10

Optimization design research on low sonic boom configuration for supersonic transport
下载PDF
导出
摘要 降低声爆噪声水平是未来超声速运输机取得商业成功所必须解决的关键问题之一。针对超声速飞行器声爆噪声预测与控制,建立了基于超声速线化理论及波形参数法的声爆噪声计算方法,与标模lm1021试验结果符合较好,验证了预测方法的可靠性。开展了低声爆气动布局优化设计研究。首先计算了某公务机基本布局的声爆水平并分析了声爆形成原因,在此基础上采用遗传算法分别对机身和机翼平面形状进行了低声爆优化。经过优化后的飞行器布局声爆水平大大降低,地面声爆过压降低了41%,声爆A计权声级降低了7.55dB。同时,采用CFD对优化布局气动力特性进行了计算分析,结果表明在巡航状态下阻力明显降低,而力矩特性基本没有变化。 The reduction of sonic boom noise level is one of the most important problems that must be resolved to get the commercial success in the future.For the sonic boom noise prediction and control of supersonic flight vehicle,the sonic boom noise level prediction methods based on supersonic linear theory and waveform parameter method were developed.The prediction results agreed well with the experiment results of the lm1021,thus the reliability of the prediction methods were validated.The low sonic boom configuration optimizations were researched.The sonic boom level of a basic configuration of supersonic business jet was computed,and the cause of sonic boom formation was analyzed.Based on the results and the analysis,the fuselage and wing planform were optimized separately to decrease the noise level of sonic boom.Compared with the basic configuration,the sonic boom level of optimized configuration decreased distinctively.The overpressure decreased 41%,and the A-weighted noise level decreased 7.55 dB.The aerodynamic characteristics of optimized configuration were computed by computational fluid dynamics(CFD).Compared with the basic configuration,the drag decreased significantly at the cruise condition,while the moment almost unchanged.
作者 郝璇 苏诚 刘芳 周家检 HAO Xuan;SU Cheng;LIU Fang;ZHOU Jiajian(China Academy of Aerospace Aerodynamics,Beijing 100074,China)
出处 《空气动力学学报》 CSCD 北大核心 2018年第2期327-333,共7页 Acta Aerodynamica Sinica
关键词 声爆 超声速运输机 优化设计 气动噪声 超声速线化理论 sonic boom supersonic transport optimization design aeroacoustics supersonic linear theory
  • 相关文献

参考文献5

二级参考文献42

  • 1余锋.超声速喷气客机研制进行时[J].国际航空,2006(7):75-77. 被引量:1
  • 2Meredith K B,Dahlin J A,Graham D H, et al. Computational fluid dynamics comparison and flight test measure ment of F-5E off-body pressures [R]. AIAA Paper 2005- 0006,2005.
  • 3Hamilton M F, Blackstock D T. Nonlinear acoustics[M]. San Diego, USA: Academic Press, 1998.
  • 4Stanescu D, Hahashi W G. 2N-storage low dissipation and low-dispersion Runge-Kutta for computational acoustics[J].Journal of Computational Physics, 1998,143 : 674-681.
  • 5Khokhlova V A, Souchon R, Tavakkoli J, et al. Numerical modeling of finite-amplitude sound beams: shock formation in the near field of a cw plane piston source [J]. Journal of Acoustical Society of America, 2001, 110 (1): 95-108.
  • 6Maglieri D J, Plotkin K J. Sonic boom, chapter 10, aeroacoustics of flight vehicles[R]. NASA RP-1258,1991, 1: 519-561.
  • 7Whitham G B. The flow pattern of a supersonic projectile [J]. Communications on Pure and Applied Mathematics, 1952,5:301-348.
  • 8Seebass R. Sonic boom theory [J]. Journal of Aircraft, 1969,6 : 177-184.
  • 9Cleveland R O,Chambers J P,Bass H E et al. Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres[J]. Journal of Acoustical Society of America, 1996,100 (5) : 3017-3027.
  • 10Carlson H W. An investigation of some aspects of the sonic boom by means of wind tunnel measurements of pressures about several bodies at a Mach number of 2.01 [R]. NASA TN D-161,1959.

共引文献34

同被引文献53

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部