期刊文献+

无人机识别的音频特征提取方法 被引量:13

Feature Extraction and Classification of Acoustic Signals of Drones
下载PDF
导出
摘要 针对无人机飞行时噪声产生的机理,分别选取基于经验模态分解(EMD)的能量比以及梅尔频率倒谱系数(MFCC)的特征提取算法实现无人机声信号的特征提取,并引用主成分分析(PCA)方法对特征集进行降维融合处理。最后选择矢量量化方法(VQ)作为分类器对不同类型的无人机目标进行分类与识别。实验结果表明特征融合后的分类性能要好于基于单一特征的分类性能,该方法较好地体现不同类型无人机之间的差异,分类结果准确率较高,具有良好的稳定性。 The mechanism of noise generation of drone flight is studied.The feature extraction method based on empirical mode decomposition(EMD)energy ratio and Mel-frequency reciprocal spectrum coefficient(MFRSC)is proposed.The acoustic signal extraction of the drone flight is realized.Then,the principal component analysis(PCA)method is used to combine the feature and reduce the dimension of the feature.Finally,the vector quantification(VQ)is chosen as a classifier to classify and identify the types of drone targets.The experimental results show that the classified performance of the combined feature is better than that of the single feature.The method can reflect the difference between the types of drones and have high accuracy and good stability for classification of features.
作者 丘恺彬 李建良 QIU Kaibin;LI Jianliang(School of Science,Nanjing University of Science&Technology,Nanjing 210094,China)
出处 《噪声与振动控制》 CSCD 2018年第2期188-192,共5页 Noise and Vibration Control
关键词 声学 经验模态分解 梅尔频率倒谱系数 特征提取 矢量量化方法 分类与识别 acoustics empirical mode decomposition(EMD) Mel-frequency reciprocal spectrum coefficient(MFRSC) feature extraction vector quantification(VQ) classification and identification
  • 相关文献

参考文献4

二级参考文献30

共引文献43

同被引文献123

引证文献13

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部