期刊文献+

一种基于混合区域分割的特征词袋模型识别算法 被引量:1

A Word Bag Recognition Algorithm Based on Mixture Region Segmentation
下载PDF
导出
摘要 数字广告图像识别与数据分析在广告精准推送、收视行为分析、商业网络搜索等各大应用领域有着重要的应用。针对网络图片搜索的实际需求,结合图像特征提取识别技术,本文对数字媒体广告图像的识别和分类方法进行了研究。针对传统的基于空间金字塔匹配的视觉词典模型算法匹配条件较为苛刻、缺乏抗形变能力等局限性,在视觉词典模型算法的基础上,引入视觉特征词典特征点的空间位置信息,使用混合高斯模型实现了自适应的空间区域划分。实验结果表明,识别算法的抗形变能力和识别精度在标准库及本地广告库的测试中均能取得较好的测试结果。 Digital advertising image recognition and data analysis have a wide application in precise advertising push,viewing behavior analysis,and business web search.This paper studys the recognition and classification of digital media advertising images by analyzing the actual characteristics of advertising images and utilizing image feature extraction technology.Aiming at the shortcomings of the traditional visual word bag based on spatial Pyramid matching algorithm,e.g.,the harsh matching condition and the lack of deformation resistance,this paper uses Gaussian mixture model to achieve the adaptive spatial zoning,by introducing the spatial location information of the feature points of the visual word bag.It is shown that the deformation resistance ability and the recognition accuracy in the proposed algorithm can attain good results in the test of the standard database and the local advertising database.
作者 常青 邵臣 胡越 CHANG Qing;SHAO Chen;HU Yue(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期254-259,共6页 Journal of East China University of Science and Technology
关键词 空间金字塔 空间投影直方图 混合高斯模型 spatial pyramid spatial projective histogram Gaussian mixture model
  • 相关文献

参考文献4

二级参考文献17

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 3侯德鹏,刘政清,路远.综合灰度形态学与模糊熵的红外图像区域分割[J].光电技术应用,2007,22(3):56-60. 被引量:2
  • 4Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 5Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 6Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 7Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 9Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 10Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.

共引文献240

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部