期刊文献+

状态和输入受限的切换奇异布尔控制网络的最优控制(英文) 被引量:3

Optimal control of switched singular Boolean control networks with state and input constraints
下载PDF
导出
摘要 本文研究了状态和输入均受限的切换奇异布尔控制网络的最优控制问题.利用矩阵半张量积方法获得受限切换奇异布尔控制网络的等价代数形式.然后通过类似针变化得到了存在最优控制的必要条件,并且提出了一个算法设计切换序列和控制策略使收益函数最大化.最后给出例子验证所得结果的有效性. In the present paper,the optimal control problem of switched singular Boolean control networks(SSBCNs)with state and input constraints is investigated.By using the semi-tenser product of matrices,the parallel constrained algebraic form is obtained for constrained SSBCNs.Then a necessary condition for the existence of optimal control is presented by using an analogous needle variation.An algorithm is proposed to design the proper switching sequence and control strategy which maximizes the cost functional at a fixed termination time.Finally,a numerical example is given to show that the new results obtained in this paper are very effective.
作者 邓磊 巩蒙蒙 朱培勇 DENG Lei;GONG Meng-meng;ZHU Pei-yong(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第3期299-307,共9页 Control Theory & Applications
基金 Supported by the National Nature Science Foundation of China(11501391) the Scientific Research Project of Sichuan University of Science and Engineering(2014RC02)
关键词 切换奇异布尔控制网络 状态和输入受限 最优控制 半张量积 switched singular Boolean control network state and input constraints optimal control semi-tensor product
  • 相关文献

参考文献2

二级参考文献26

  • 1程代展,郭宇骞.切换系统进展[J].控制理论与应用,2005,22(6):954-960. 被引量:57
  • 2Bin MENG,Jifeng ZHAN.Reachability analysis of switched linear discrete singular systems[J].控制理论与应用(英文版),2006,4(1):11-17. 被引量:2
  • 3[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 4[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 5[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 6[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.
  • 7[5]Willems, J. L., Stability Theory of Dynamical Systems, New York: John Wiley & Sons, Inc., 1970.
  • 8[6]Ooba, T., Funahashi, Y., Two conditions concerning common quadratic Lyapunov functions for linear systems, IEEE Trans. Automat. Contr., 1997, 42(5): 719—721.
  • 9[7]Ooba, T., Funahashi, Y., Stability robustness for linear state space models——a Lyapunov mapping approach, Sys. Contr. Lett, 1997, 29. 191—196.
  • 10[8]Cheng, D., Xue, W., Huang, J., On general Hamiltonian Systems, Proc. of ICARCV'98, Singapore, 1998, 185—189.

共引文献57

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部