期刊文献+

基于L1-范数距离的最小二乘对支持向量机 被引量:3

L1-norm Distance Based Least Squares Twin Support Vector Machine
下载PDF
导出
摘要 最小二乘对支持向量机(LSTSVM)是一种有效的分类技术。然而,该方法需计算点到平面的平方L2-范数距离,从而易受野值或噪声的影响。为了缓解此问题,提出了一种有效的鲁棒LSTSVM方法,即基于L1-范数距离的LSTSVM(LSTSVM_(L1D))。该方法由于使用L1范数作为距离度量,因此不易受到野值或噪声数据的影响。此外,设计了一种有效的迭代算法,旨在求解目标问题,并从理论上证明了其收敛性。在人工数据集和UCI数据集上验证了LSTSVM_(L1D)的有效性。 Recently,LSTSVM,as an efficient classification algorithm,was proposed.However,this algorithm computes squared L2-norm distances from planes to points,such that it is easily affected by outliers or noisy data.In order to avoid this problem,this paper presented an efficient L1-norm distance based robust LSTSVM method,termed as LSTSVM L1D.LSTSVM L1D computes L1-norm distances from planes to points and is not sensitive to outliers and noise.Besides,this paper designed an efficient iterative algorithm to solve the resulted objective,and proved its convergence.Experiments on artificial dataset and UCI dataset indicate the effectiveness of the proposed LSTSVM L1D.
作者 周燕萍 业巧林 ZHOU Yan-ping;YE Qiao-lin(School of Internet of Things and Software Technology,Wuxi Professional College of Science and Technology,Wuxi,Jiangsu 214028,China;College of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China)
出处 《计算机科学》 CSCD 北大核心 2018年第4期100-105,130,共7页 Computer Science
基金 江苏省自然科学基金(BK20171453)资助
关键词 最小二乘支持向量机 基于L1-范数距离的LSTSVM L1范数距离 L2范数平方距离 Least squares support vector machine L1-norm distance based LSTSVM L1-norm distance Squared L2-norm distance
  • 相关文献

参考文献3

二级参考文献40

  • 1杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 2Fung G, Mangasarian O L. Proximal support vector machine classifiers [C] //Proc of Knowledge Discovery and Data Mining(KDD2001). New York: ACM, 2001:77-86.
  • 3Mangasarian O L, Wild E. Multisurface proximal support vector machine classification via generalized eigenvalues [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
  • 4Jayadeva, Khemchandai R, Chandra S. Fuzzy proximal support vector classification via generalized cigenvalues [G]// LNCS 3776: Berlin: Springer, 2005:360-363.
  • 5Guarracino M R, Cifarelli C, Seref O, et al. A classification method based on generalized eigenvalue problems [J]. Optimization Methods and Software, 2007, 22(1): 73-81.
  • 6Jayadeva, Khernchandai R, Chandra S. Twin support vector machines for pattern classification [J]. IEEE Trans on Pattern Analysis and Machine Intelligence (TPAMI), 2007, 29(5) : 905-910.
  • 7Zou H. An improved 1-norm SVM for simultaneous classification and variable selection [J]. Journal of Machine Learning Research Proceedings Track, 2007, 2:675-681.
  • 8Sun L, Ji S W, Ye J P. A Least Squares Formation for a Class of Generalized Eigenvalue Problems in Machine Learning [C/OL]//Proc of the 26th Int Conf on Machine Learning. 2009 [2009-11-01]. http://www. machinelearning. org/arehive/ieml2009/.
  • 9Fiacco A V, McCormick G P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques [M]. New York: John Wiley & Sons, 1968.
  • 10Mangasarian O L. A finite Newton method for classification problems [J]. Optimization Methods and Software, 2002, 17:913-929.

共引文献27

同被引文献46

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部