摘要
为研究一种可用于雷达领域的新型冷却技术,本文研究了高电压下共面薄膜电极之间的DC表面放电现象。设计制作了一系列具有不同参数且带有一个阳极针尖以及两个对称布置阴极的样机,通过改变基底表面粗糙度以及不同的结构参数(如凹槽深度、凹槽宽度以及阴极长度等)进行实验测试。结果表明:主要受到基底表面离子迁移率的影响,凹槽深度对于共面薄膜平面电极的表面放电现象影响最大;表面放电的电流稳定性随着深度的增加而增加;而放电起始电压则随着深度的增加而减小;离子与平面基底之间的流体阻力影响相对较小。共面薄膜电极表面放电的研究对于推动电冷却技术在雷达技术领域的应用具有重要意义。
The DC surface high voltage discharge of thin coplanar flat electrodes was experimentally analyzed for the purpose of studying a cooling technology in radar filed.A series of samples including two symmetrical cathodes and one anode with a sharp tip were built to evaluate the effects on surface discharge of the separation between two thin coplanar flat electrodes and the flow resistance between ions and a flat substrate.A series of tests have been done for the surface discharge characteristics by changing surface roughness and structural parameters such as cavity depth,gap width and cathode length.The main results show that the cavity depth is the most important structural parameter,since it has the greatest effect on the mobility of neutral molecules in the space between the thin coplanar flat electrodes.The space is a key role for collisions to generate the surface discharge,which is affected by ion mobility.The stability of surface discharge is in direct proportion to gap depth,but the firing voltage decreases with the increase of the depth.Besides,the flow resistance between ions and flat substrate has relatively less effect on the surface discharge.The research of the surface discharge of thin coplanar flat electrodes offers the promise of electrocooling application in radar field in the future.
作者
周织建
聂伟荣
洪肇斌
ZHOU Zhi-jian;NIE Wei-rong;HONG Zhao-bin(38th Research Institute of China Electronic Technology Group Corporation,Hefei 230088,China;School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2018年第4期866-874,共9页
Optics and Precision Engineering
基金
国家自然科学基金资助项目(No.51475245)
关键词
表面放电
共面薄膜平面电极
电冷却
表面电流体
雷达技术
surface discharge
thin coplanar flat electrode
electrocooling
surface electrohydrodynamic
radar technology