期刊文献+

采用信任网络增强的协同过滤算法 被引量:13

Enhanced collaborative filtering algorithm adopting trust network
下载PDF
导出
摘要 由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通过引入社会网络中常用的信任关系,即在原始的用户—项目评分矩阵上,通过信任计算建立用户间的信任关系,并使用传播规则传递信任关系,构建一个用户信任网络;最终使用用户间的信任度与相似度线性加权作为新的权重进行推荐。在真实的数据集上进行测试,实验结果表明,ECFATN算法不仅在一定程度上缓解了数据稀疏性问题并提高了推荐精度,而且由于信任关系的引入,对于用户冷启动问题也有较大的改善。 Due to the widespread data sparsity,traditional collaborative filtering system with single similarity cannot recommend accountably,meanwhile,the sparsity of co-rated items can lead to poor recommendation performance.In view of the above problems,this paper came into consideration an enhanced collaborative filtering algorithm adopting trust network(referred as ECFATN).This algorithm built a users’trust network based on the original user-item rating matrix by introducing the common trust relations of social network,established trust relationships between users with trust computation,and deliveried trust-relations with propagation rules.Then it linearly weighed trust and similarity between users to get a new weight.Finally a new recommendation way came out with this new weight.Experimental results show that this algorithm moderately alleviates data sparsity,and improves recommendation accuracy.Also,with the introduction of trust relations,this algorithm can improve user’s cold-start problem.
作者 李熠晨 陈莉 石晨晨 兰小艳 Li Yichen;Chen Li;Shi Chenchen;Lan Xiaoyan(School of Information&Technology,Northwest University,Xi’an 710127,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第1期116-120,共5页 Application Research of Computers
关键词 数据稀疏性 协同过滤 相似度 信任网络 用户冷启动 data sparsity collaborative filtering similarity trust-network user’s cold-start
  • 相关文献

参考文献1

二级参考文献17

  • 1Goldberg D,Nichols D,Oki B M.Using collaborative fil- tering to weave an information tapestry[J].Communications of the ACM, 1992,35 (12) : 61-70.
  • 2Sun Xiaohua,Kong Fansheng,Ye Song.A comparison of several algorithms for collaborative filtering in startup stage[C]//Proeeedings of the 2005 IEEE International Conference on Networking, Sensing and Controlling, Los Alamitos, CA, USA, 2005 : 25-28.
  • 3Vozalis E, Margariis K.Analysis of recommender system' algorithms[C]//Proceedings of the 6th Hellenic-European Conference on Computer Mathematics and Its Application, Athens, Greece, 2003 : 732-745.
  • 4Sinha R, Swearingen K.Comparing recommendation made by online systems and friends[C]//Proceedings of the DELOSNSF Workshop on Personalization and Recom- mender Systems in Digital Libraries,Ireland,2001 : 34-54.
  • 5Liu F,Lee H J.Use of social network information to enhance collaborative filtering performance[J].Expert Sys- tems with Applications, 2010,37 (7) : 4772-4778.
  • 6Massa P,Bhattacharjee B.Using trust in recommender sys- tems: an experimental analysis[C]//Proeeedings of iTrust2004 International Conference, 2004 : 221-235.
  • 7Marsh S.Formalizing trust as a computational concept[D]. Britain: University of Stirling, 1994.
  • 8Jiang Shouxu, Li Jianzhong.A reputation-based trust mech- anism for p2p e-commerce systems[J].Journal of Soft- ware,2010,10(18) :2551-2663.
  • 9Karafyllis I.Finite-time global stabilization by means of time-varying distributed delay feedback[J].S1AM Journal on Control and Optimization, 2006,45 ( 1 ) : 320-342.
  • 10Papagelis M,Plexousakis D.Qualitative analysis of user- based and item-based prediction algorithms for recom-mendation agents[J].Engineering Application of Artificial Intelligence, 2005,18 (7) : 781-789.

共引文献8

同被引文献104

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部